什么从什么写短句_08-新媒体写作如何变长句为短句,提高阅读体验

5e97ba7928356eb3fc882a36c4eebf60.png

本篇文章和下篇文章讲两个更为基础的写作技巧:一个是如何变长句为短句,一个是如何给文章做减法。

一、如何变长句为短句

长句表意严密、精确、细致、气势磅礴;短句简洁明快有力,节奏鲜明。你会发现长句和短句,各有优势啊!那为什么非要把长句变成短句呢?

因为阅读环境变了。传统媒体时代是沙发式阅读,你读书的时候一般是在一个安静的场所静止的状态,有充分的时间和相对集中的注意力,容易进入沉浸式阅读状态中。

f1d0036c8ba33b9c887c7ffccba170ab.png

那新媒体时代刚好相反,我们的阅读环境可能是在工位上、地铁上、出租车上、商场里;人也经常是移动的状态,时间是碎片化的,注意力是随时被打断的,这就很难进入沉浸式的阅读状态中,一般都是浅阅读。

在潜前阅读状态中短句那种表意简洁、明快有力,节奏鲜明的特质就能发挥最大优势了,因此新媒体时代我们更多是提倡你去写短句。长句变短句有三个步骤:

第一,分析结构提取主干;

第二,理清枝干切为短句;

第三,依照顺序添词写句;

---------------------手动分割线------------------

第一步,分析结构提取主干

当我们要把长句变短句的时候,首先要分析这个句子的结构,看看这个句子中的主谓宾定状补分别是哪些?然后提取出句子的主谓宾,让句子的主干直接独立成为一个句子,可以适当附带一些枝叶。

第二步,理清枝叶切为短句

分析句中的定语、状语、补语三种枝叶成分的构成,然后你按照其表述的角度将其划分为几个相对独立的短句;从意思上看的某个角度表达一个完整意思的枝叶部分,就可以切分为一个句子。从形式上看任意一个主谓短语或者复句型是的枝叶成分都可以独立成句。

第三步,依照顺序添词写句

也就是上两步做完之后,主干句和枝叶句都有了;那么一个长句就变成多个短句了,那么最后一步就是你综合去阅读一边,然后按照用户体验的最佳感觉,然后给这些短句排序,并在句首添加一定的带词或者关联词,然后让这些句子更加连贯照应;

df343ee301465cd4cebf79b119fa102b.png

高考题都是经过精心设计的,用高考题来训练这些技巧是非常有效的。2011年全国大纲卷语文的一个题目:把下面这个长句改成几个较短的句子,可以改变语序、增删词语,但不得改变原意。

这句话是:总结是一个组织或个人在工作学习告一段落后进行回复、检查、分析和评价,从中找出成功的经验或失败的教训,悟出个中的道理,得出规律性的认识。并用以指导今后的工作而形成的书面材料。

我们按照上面的三步来做!

第一步,分析结构、提取主干;

这句话的主语是‘总结’、宾语是‘书面材料’,他的主干‘总结是书面材料’,其他大部分是一些修饰语。如果你觉得太单薄可以稍加定语,总结是一个组织或个人在工作、学习告一段落后而写的书面材料。

第二步,理清枝叶、切为短句

枝叶都是修饰‘总结’的,按照这样的角度来切成短句。

‘总结’的任务是形成书面材料,总结的对象是组织和个人的工作和学习,总结的内容是对过去的工作,学习进行回顾,检查,分析,从中找出成功的经验或失败的教训,悟出个中的道理,得出规律性的认识。

第三步,依照顺序填词写句

我们按照一定的逻辑顺序加上一定的关联词,把上面的东西和主干句串联起来。

总结是为今后的工作而形成的书面材料,它是一个组织或个人,在工作,学习告一段落后总结的,目的是进行回顾检查,分析,从中找出成功的经验或失败的教训,悟出个中道理,并得出规律性的认识。

2266916d937a6d7e09c2e3e21e7d2810.png

变成这个小短句之后,它每一个句子都是独立存在的,这就是长句变短句的一个三步方法,复杂的掌握了!简单的你运用起来更快,运用更自如。

长句变短句在新媒体时代写东西尤为重要!因为新媒体时代我们要把阅读节奏提上来。很多时候用户的阅读节奏啊,不是他自己控制的,而是被我们设计的。

aed70548d62d24abdb8a7dca1fc379d8.png

欢迎关注,点赞是最大的支持!

汉字字库存储芯片扩展实验 # 汉字字库存储芯片扩展实验 ## 实验目的 1. 了解汉字字库的存储原理和结构 2. 掌握存储芯片扩展技术 3. 学习如何通过硬件扩展实现大容量汉字字库存储 ## 实验原理 ### 汉字字库存储基础 - 汉字通常采用点阵方式存储(如16×16、24×24、32×32点阵) - 每个汉字需要占用32字节(16×16)到128字节(32×32)不等的存储空间 - 国标GB2312-80包含6763个汉字,需要较大存储容量 ### 存储芯片扩展方法 1. **位扩展**:增加数据总线宽度 2. **字扩展**:增加存储单元数量 3. **混合扩展**:同时进行位扩展和字扩展 ## 实验设备 - 单片机开发板(如STC89C52) - 存储芯片(如27C256、29C040等) - 逻辑门电路芯片(如74HC138、74HC373等) - 示波器、万用表等测试设备 - 连接线若干 ## 实验步骤 ### 1. 单芯片汉字存储实验 1. 连接27C256 EPROM芯片到单片机系统 2. 将16×16点阵汉字字库入芯片 3. 编程序读取并显示汉字 ### 2. 存储芯片字扩展实验 1. 使用地址译码器(如74HC138)扩展多片27C256 2. 将完整GB2312字库分布到各芯片中 3. 编程序实现跨芯片汉字读取 ### 3. 存储芯片位扩展实验 1. 连接两片27C256实现16位数据总线扩展 2. 优化字库存储结构,提高读取速度 3. 测试并比较扩展前后的性能差异 ## 实验代码示例(单片机部分) ```c #include <reg52.h> #include <intrins.h> // 定义存储芯片控制引脚 sbit CE = P2^7; // 片选 sbit OE = P2^6; // 输出使能 sbit
### 如何使用 InternVL2_5-8B 模型进行 LoRA 微调 #### 准备环境与依赖安装 为了确保能够顺利运行LoRA微调实验,需先准备好相应的开发环境并安装必要的库。这通常涉及到Python虚拟环境的创建以及特定版本PyTorch和其他辅助工具包的安装。 ```bash conda create -n internvl_lora python=3.9 conda activate internvl_lora pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117 pip install transformers datasets accelerate bitsandbytes peft lmdeploy xtuner ``` #### 下载预训练模型 获取InternVL2_5-8B的基础权重文件对于后续的操作至关重要。依据给定的信息,可以通过命令行复制指定路径下的模型至本地工作目录[^3]。 ```bash cp -8B /root/model/ ``` #### 配置LoRA参数设置 针对多模态大模型如InternVL实施低秩适应(LoRA),主要集中在调整网络内部某些层的学习率及其结构变化上。通过修改配置文件或直接在脚本中定义这些超参来实现个性化定制化需求。 ```python from peft import LoraConfig, get_peft_model config = { "target_modules": ["q_proj", "v_proj"], # 调整目标模块 "rank": 4, # 设置LORA矩阵维度大小 "alpha": 32 # 控制缩放因子 } peft_config = LoraConfig(**config) model = get_peft_model(model, peft_config) ``` #### 数据集准备与处理 数据的质量直接影响到最终效果的好坏,在此阶段要精心挑选适合的任务场景的数据源,并对其进行清洗、标注等一系列前期准备工作。考虑到冷笑话生成这一特殊应用场景,可能需要收集大量幽默短句作为训练样本[^2]。 ```python from datasets import load_dataset dataset_name = 'your_cold_joke_dataset' data_files = {'train': f'{dataset_name}/train.json', 'test': f'{dataset_name}/test.json'} raw_datasets = load_dataset('json', data_files=data_files) def preprocess_function(examples): return tokenizer([text for text in examples["jokes"]], truncation=True, padding="max_length") tokenized_datasets = raw_datasets.map(preprocess_function, batched=True) ``` #### 开始微调过程 当一切就绪之后就可以启动实际的微调流程了。这里会利用之前提到过的`xtuner`来进行高效优化求解器的选择和调度策略的设计等工作[^1]。 ```python import os from transformers import Trainer, TrainingArguments training_args = TrainingArguments( output_dir="./results", evaluation_strategy="epoch", learning_rate=2e-5, per_device_train_batch_size=8, per_device_eval_batch_size=8, num_train_epochs=3, weight_decay=0.01, logging_dir='./logs', logging_steps=10, ) trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_datasets['train'], eval_dataset=tokenized_datasets['test'] ) trainer.train() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值