python 方差分解_从线性回归看偏差-方差分解(Bias-Variance Decomposition)

偏差-方差分解是评估模型拟合能力与复杂度的工具。本文通过Python示例解释了如何用该方法分析模型的过拟合与欠拟合。偏差表示模型预测值与真实值的差距,方差则描述模型在不同训练集上的预测差异。最终,期望错误由偏差的平方、方差和不可减小的误差三部分组成。
摘要由CSDN通过智能技术生成

打开微信扫一扫,关注微信公众号【数据与算法联盟】

概述

对于数字序列1,3,5,7,?,正常情况下大家脑海里蹦出的是9,但是217314也是其一个解

9对应的数学公式为

f(x)=2x−1f(x)=2x-1f(x)=2x−1

217314对应的数学公式为

f(x)=181112x4−90555x3+6338852x2−452773x+217331f(x)=\frac{18111}{2} x^{4}-90555x^{3}+\frac{633885}{2}x^{2}-452773x+217331f(x)=218111​x4−90555x3+2633885​x2−452773x+217331

Python 实现为:

>>> def f(x):

... return 18111/2 * pow(x,4) -90555 * pow(x,3) + 633885/2 * pow(x,2) -452773 * x +217331

...

>>> f(1)

1.0

>>> f(2)

3.0

>>> f(3)

5.0

>>> f(4)

7.0

>>> f(5)

217341.0

当机器学习模型进行预测的时候,通常都需要把握一个非常微妙的平衡,一方面我们希望模型能够匹配更多的训练数据,相应的增加其复杂度,否则会丢失相关特征的趋势(即模型过拟合)ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值