均值差异大但是t检验不显著_数据分析,从T检验开始(独立)

本文介绍了独立样本T检验在数据分析中的应用,用于比较两类别的连续数据差异。通过SPSS软件演示了如何进行独立样本T检验,并解释了当t值和显著性概率值P的关系,说明在拖延行为的性别差异检验中,未发现显著差异。同时强调了方差齐性检验的重要性以及在方差不齐情况下的替代检验方法。
摘要由CSDN通过智能技术生成

问题

“没有比较就没有伤害,没有比较就没有差异”——差异检验,其实质是比较均值之间的差异,例如不同性别在网络成瘾上有无差异、不同年级在学习成绩上有无差异、不同年级在性别上的差异等。SPSS软件中关于差异检验主要包括T检验(单样本T检验、独立样本T检验、配对样本T检验)、单因素方差分析(ANOVA)、卡方检验。接下来要介绍的独立样本T检验。

分析与解释

差异检验三部曲:T检验、单因素方差分析和卡方检验。T检验适用于检验分类数据和连续数据之间的差异,且要求分类数据仅有两个类别或水平;单因素方差分析适用于检验分类数据和连续数据之间的差异,且要求分类数据有三个或以上的类别或水平;卡方检验适用于分类数据与分类数据之间的差异。T检验和方差分析要求数据符合【独立性】、【正态性】和【方差齐性】。

c5ac8ee65b3f683fe46f7053676c9a2f.png cb0e5e3ce8f2bba951b682a8e4fadb62.png

T检验对数据的正态性有一定的耐受能力。如果数据只是稍微偏离正态,结果仍然是稳定的。如果数据偏离正态很远,则需要考虑数据转换或采用非参数方法分析。

两个独立样本T检验的原假设为两个总体均值之间不存在显著性差异,需分两步完成

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值