python t检验显著差异_两组数据的均值是否具有显著差异的T检验

本文通过实际案例介绍了T检验的应用过程,并对比了使用Excel与SPSS进行数据分析的不同结果。强调了在进行T检验前需要先进行F检验以判断方差齐性的步骤。

最近在做分析的时候,遇到了T检验,然而对于没有统计学背景的人来说完全不知如何下手

当然了,遇到问题第一反应就是百度。

果然百度出来了很多链接,当时第一次直接选择了用Excel去做T检验。下面是源数据

LongevityNon-Longevity

0.1662020310.176821101

0.1607662080.151576675

0.1577920.16968315

0.1495972250.1359756

0.176689990.146021867

0.1684370.160777442

0.21333350.1141342

0.2138549130.10317785

0.1360305810.14040734

0.167074653

0.1509637

0.1505532

0.0951329

0.1425619

0.169755996

0.138641435

0.214860396

0.14020343

0.146396304

0.170556892

0.16523543

0.164616063

0.221629733

0.144765973

0.143563388

0.206236403

0.15135241

下面是Excel的结果,

1459553-20180831195658813-1838361173.jpg

结果竟然是不显著的!!!

后来又专门请教了师兄,用SPASS重新做了一遍,下面是结果,

1459553-20180831195843958-692894512.png

很明显结果是显著的,如果要做T检验,首先要根据F检验判断方差齐性是否显著,F检验的p=0.984明显> p=0.05结果不显著,所以方差齐性。因此T检验的结果看第一列。

如果F检验的结果是显著的,也就是p<0.05,那么T检验的结果就要看第二列。

您好!针对您的问题,我理解的是您想要比较两组数据之间的显著差异,如果我的理解有误请您指正。 在 Python 中,可以使用多种方法来比较两组数据之间的差异性,这里简单介绍两种常用的方法: 1. T 检验 T 检验是一种常用的假设检验方法,用于检验两个独立样本的均值是否显著不同。在 Python 中,可以使用 scipy.stats.ttest_ind() 函数来进行 T 检验。 示例代码: ``` import scipy.stats as stats # 生成两组随机数据 data1 = [1, 2, 3, 4, 5] data2 = [2, 4, 6, 8, 10] # 进行 T 检验 t, p = stats.ttest_ind(data1, data2) # 输出检验结果 if p < 0.05: print("两组数据均值显著不同") else: print("两组数据均值显著差异") ``` 2. Mann-Whitney U 检验 Mann-Whitney U 检验是一种非参数检验方法,用于比较两个独立样本的中位数是否显著不同。在 Python 中,可以使用 scipy.stats.mannwhitneyu() 函数来进行 Mann-Whitney U 检验。 示例代码: ``` import scipy.stats as stats # 生成两组随机数据 data1 = [1, 2, 3, 4, 5] data2 = [2, 4, 6, 8, 10] # 进行 Mann-Whitney U 检验 u, p = stats.mannwhitneyu(data1, data2) # 输出检验结果 if p < 0.05: print("两组数据中位数显著不同") else: print("两组数据中位数无显著差异") ``` 需要注意的是,在使用这两种方法进行数据比较时,需要先判断数据是否满足正态分布等前提条件。如果数据不满足这些前提条件,则需要使用其他的非参数检验方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值