和与余数的和同余理解_关于同余问题,比较好理解的一种角度(前篇)

本文介绍了同余的概念,通过除法和余数的关系,阐述了同余数的性质。文章以易于理解的方式解释了如何通过余数相等判断整数之间的关系,并通过实例展示了同余数的加法性质,帮助读者更好地理解同余问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这个方法只能算作“比较好理解”的一种角度,并没有“特别巧妙”,等后面再思考这个问题时,可能会有更简单好懂的理解。

以下内容阅读前要先具备“因数和倍数”一系列知识,包括最大公因数和最小公倍数等等。

这篇来说“同余问题”。

先名词解释,“同余”指的是具有相同余数的数,余数自然和“谁除以谁余几”有关,所以一定是在整数除法中探讨的,自然,同余在整数范围内讨论。

有些小朋友们不想碰“同余问题”的原因,多半是带有“≡”符号的看起来特别不习惯,题目中提到“谁除谁”或者“谁被谁整除”一下子分不清感到乱,又或者是“a和b关于模数c同余”这种看起来得逐字逐词分析的文字有种好烦人的感觉等等。

所以,现在来尝试一下比较好理解的一种方式。

首先说余数。余数的话一定是有除法才有余数,比如8除以3,得到商2余2。要是和“同余”有关,也就是余数得相同,比如15除以13余数也是2,只不过两个被除数8和15没什么联系,两个除数3和13也没什么联系,只是余数相同。换个角度,如果我们规定除数都是3,那么除了8除以3余2之外,20除以3也余2,5除以3也余2,那么把这些除以3都余2的数排列一下:

5,8,11,14,17,20,23,26,29,32,35,38,41,…

别忘了加上2本身,因为2除以3商0余2,所以是:

2,5,8,11,14,17,20,23,26,29,32,35,38,41,…

然后观察。长得跟等差数列似的,每相邻两个数之间都差了3,而3刚好是除数。刚才提到余数和除法有关,那么“除以3”按照基础除法来说,等同于把被除数平均分成3份,如果以上数字都作为被除数,平均分成3份后肯定都要余2,因为2并没有3那么多,所以不够分。挑两个数,一个5,一个14,按照这种方式画个图:

59ae1c5d796aa8405f8bba0dd376e79e.png

可以

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值