这个方法只能算作“比较好理解”的一种角度,并没有“特别巧妙”,等后面再思考这个问题时,可能会有更简单好懂的理解。
以下内容阅读前要先具备“因数和倍数”一系列知识,包括最大公因数和最小公倍数等等。
这篇来说“同余问题”。
先名词解释,“同余”指的是具有相同余数的数,余数自然和“谁除以谁余几”有关,所以一定是在整数除法中探讨的,自然,同余在整数范围内讨论。
有些小朋友们不想碰“同余问题”的原因,多半是带有“≡”符号的看起来特别不习惯,题目中提到“谁除谁”或者“谁被谁整除”一下子分不清感到乱,又或者是“a和b关于模数c同余”这种看起来得逐字逐词分析的文字有种好烦人的感觉等等。
所以,现在来尝试一下比较好理解的一种方式。
首先说余数。余数的话一定是有除法才有余数,比如8除以3,得到商2余2。要是和“同余”有关,也就是余数得相同,比如15除以13余数也是2,只不过两个被除数8和15没什么联系,两个除数3和13也没什么联系,只是余数相同。换个角度,如果我们规定除数都是3,那么除了8除以3余2之外,20除以3也余2,5除以3也余2,那么把这些除以3都余2的数排列一下:
5,8,11,14,17,20,23,26,29,32,35,38,41,…
别忘了加上2本身,因为2除以3商0余2,所以是:
2,5,8,11,14,17,20,23,26,29,32,35,38,41,…
然后观察。长得跟等差数列似的,每相邻两个数之间都差了3,而3刚好是除数。刚才提到余数和除法有关,那么“除以3”按照基础除法来说,等同于把被除数平均分成3份,如果以上数字都作为被除数,平均分成3份后肯定都要余2,因为2并没有3那么多,所以不够分。挑两个数,一个5,一个14,按照这种方式画个图:
可以