mysql8.0开窗函数_MYSQL8.0新特性开窗函数体验报告

对于窗口函数,比如row_number(),rank(),dense_rank(),NTILE(),PERCENT_RANK()等等,现在MySQL8.0+版本已经支持了!

这是一个原始数据表,数据用于测试

286b83b7768b2c6aa57f0734c1706151.png

第一部分:开窗函数和排名类函数结合

1.使用SQL查看工资排名

SELECT

`name`,

`dept`,

`salary`,

row_number () over (PARTITION BY `dept` ORDER BY salary DESC ) AS salary_rank

FROM

t_user

得到结果:

get-article-detail-147003.html

6b6da0f2d5d8a59fb966eef05966f7e4.png

2.使用开窗函数计算每个部门工资最高的前3个人

SELECT

*

FROM

(

SELECT

`name`,

`dept`,

`salary`,

row_number () over (PARTITION BY `dept` ORDER BY salary DESC) AS salary_rank

FROM

t_user

) AS tmp

WHERE

tmp.salary_rank <= 3

得到结果:

8340a87641d7f05ab6729f90ddf5f373.png

和上面 row_number()非常类似的一个开窗函数还有rank()

rank函数用于返回结果集的分区内每行的排名,行的排名是相关行之前的排名数加一。简单来说rank函数就是对查询出来的记录进行排名,与row_number函数不同的是,rank函数考虑到了over子句中排序字段值相同的情况,如果使用rank函数来生成序号,over子句中排序字段值相同的序号是一样的,后面字段值不相同的序号将跳过相同的排名号排下一个,也就是相关行之前的排名数加一,可以理解为根据当前的记录数生成序号,后面的记录依此类推。

dense_rank函数的功能与rank函数类似,dense_rank函数在生成序号时是连续的,而rank函数生成的序号有可能不连续。dense_rank函数出现相同排名时,将不跳过相同排名号,rank值紧接上一次的rank值。在各个分组内,rank()是跳跃排序,有两个第一名时接下来就是第三名,dense_rank()是连续排序,有两个第一名时仍然跟着第二名。

第二部分:开窗函数和SUM()等聚合函数结合

SELECT

`name`,

`dept`,

`salary`,

SUM(salary) over (PARTITION BY `dept`)

FROM

t_user

结果可以看到,这个语句效果和SUM()配合Group BY 使用效果是一样的,只是结果集格式不同而已:

167a71f30d3561925cc23a6b025380c6.png

但是,在上面的语句中加上ORDER BY之后,结果就完全不同了! 需要特别注意

SELECT

`name`,

`dept`,

`salary`,

SUM(salary) over (PARTITION BY `dept` ORDER BY salary ASC)

FROM

t_user

结果:

18832a248ad2bcde8030371b213f097b.png

总结规律: 有order by;按照排序连续累加;无order by,计算partition by后的和;over()中没有partition by,计算所有数据总和

同时,order by 的ASC和DESC也会导致结果不同!

第三部分 分析函数(lag、lead)

lag与lead函数是跟偏移量相关的两个分析函数,通过这两个函数可以在一次查询中取出同一字段的前N行的数据(lag)和后N行的数据(lead)作为独立的列,从而更方便地进行进行数据过滤。这种操作可以代替表的自联接,并且LAG和LEAD有更高的效率。

lead() over([partition by prov_name [ORDER BY val_cnt]])

lag、lead有三个参数,第一个是表达式或字段,第二个是偏移量,第三个是为控制默认赋值

例如:lead(field, num, defaultvalue) field需要查找的字段,num往后查找的num行的数据,defaultvalue没有符合条件的默认值。

SELECT

`name`,

`dept`,

`salary`,

lag (salary, 1) over (PARTITION BY `dept` ORDER BY salary DESC)

FROM

t_user

得出以下结果

b2ec8ffb2cf774bfd456057534a2b7c7.png

分析函数执行后结果,可以看出来,lag函数就是把同个partition组内的order by排名上一条放到自己后面作为一个新列,

这个效果在需要错位相减,做逐差计算增长率之类的时候简直就是神器!

lead()函数和lag函数左右相反,偏移的方向不同而已

SELECT

`name`,

`dept`,

`salary`,

lead (salary, 1) over (PARTITION BY `dept` ORDER BY salary DESC) '分析函数结果'

FROM

t_user

结果:

afdaafd53fbf8a18ce90664bd36e51e5.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值