(1)彩照转黑白
# -*- coding: utf-8 -*-
"""
Created on Thu Mar 21 03:45:16 2019
@author: czh
"""
%clear
%reset -f
# In[*]
from PIL import Image
import numpy as np
import os
os.chdir('D:\\train\\cv')
# In[*]
from PIL import Image
import numpy as np
a = np.asarray(Image.open("AWM.jpg").convert('L'))#.convert是变成黑白的
grad = np.gradient(a)
grad
grad_x, grad_y = grad
# In[*]
b=255-a#在对应的颜色通道减去他自己变成黑白底片的效果
im=Image.fromarray(b.astype('uint8'))
im
# In[*]
c=(100/255)*a+150#区间变换,颜色比较淡的灰度的图片
im=Image.fromarray(c.astype('uint8'))
im
# In[*]
d=255*(a/255)**2#像素平方,颜色比较深的图
im=Image.fromarray(d.astype('uint8'))
im
image.png
image.png
image.png
(2)图片转素描画
通过Numpy中的asarray函数将图片的灰度值以浮点型矩阵的形式存储起来,再用gradient函数得出图片灰度值的梯度
# -*- coding: utf-8 -*-
"""
Created on Thu Mar 21 03:45:16 2019
@author: czh
"""
%clear
%reset -f
# In[*]
from PIL import Image
import numpy as np
import os
os.chdir('D:\\train\\cv')
# In[*]
from PIL import Image
import numpy as np
a = np.asarray(Image.open("StarryNight.jpg").convert('L'))#.convert是变成黑白的
grad = np.gradient(a)
grad
Out[37]:
[array([[225. , 233. , 252. , ..., 18. , 19. , 2. ],
[ 0.5, 127. , 3.5, ..., 5. , 18. , 17. ],
[ 19.5, 10. , 126.5, ..., 103.5, 5.5, 29. ],
...,
[ 0. , 0.5, 1. , ..., 126.5, 126.5, 126.5],
[ 4. , 4.5, 5. , ..., 7. , 7. , 7. ],
[ 9. , 10. , 9. , ..., 13. , 13. , 13. ]]),
array([[239. , 0. , 21. , ..., 113.5, 115.5, 243. ],
[247. , 13.5, 29. , ..., 25.5, 107.5, 226. ],
[236. , 3. , 17. , ..., 62.5, 127.5, 241. ],
...,
[242. , 116.5, 126. , ..., 4. , 5. , 5. ],
[242. , 117.5, 127. , ..., 3. , 5. , 5. ],
[243. , 117.5, 127. , ..., 5. , 5. , 5. ]])]
我们来观察一下L矩阵,可以看出a是一个二维浮点型矩阵,因此它的梯度grad里应该有两个数组矩阵,分别对应两层维度的梯度。现取最外层维度梯度为x方向的梯度值grad_x,取第二层维度梯度值为y方向梯度值grad_y
grad_x, grad_y = grad
这时我们已经取得了图像的梯度值,就可以通过改变像素的梯度值来改变图像的灰度变化,对图像进行重构了。我们先设一个深度值depth,取值范围为(0,100),然后利用深度调整x和y方向的梯度值。
我们使
grad_x = grad_x*depth/100.
grad_y = grad_y*depth/100.
深度值越小,重构后的图像梯度值越小,即图像灰度值变化越小,画面线条越少,整体更显洁净。
比如当depth=1时:
反之,深度值越大,重构后的图像梯度值越大,即图像灰度值变化越大,画面线条越多,整体更显肮脏。比如当depth=100时
image.png
因此我们需要通过改变depth,找到最符合人类视觉远近程度的深度值。经过多次测试发现,当深度值为10左右时,即图像灰度梯度变为原来的10%左右时,画面最接近手绘化效果。(当然,对于不同的图片,这个最佳深度值不一定相同)。在本文中我们取depth=10
制造光源效果
类似版画的效果,这是因为此时的图像还没有光源效果,跟我们实际观察事物的感觉不一样,因此我们还需要为图像制造光源效果。如图,我们先假设一个光源位于图像斜上方,设俯视角为el,方位角为az,则单位光线在x,y,z方向上的投影长度分别为:通过多次调整发现,当俯视角el=π/2.2, 方位角az=π/4时光照效果最好。(当然对于不同图像两个角度的选取不一定相同)
实现代码为:
depth = 10 # (0-100)
grad = np.gradient(a) #取图像灰度的梯度值
grad_x, grad_y =grad #分别取横纵图像梯度值
grad_x = grad_x*depth/100.
grad_y = grad_y*depth/100.
A = np.sqrt(grad_x**2 + grad_y**2 + 1.)
uni_x = grad_x/A
uni_y = grad_y/A
uni_z = 1./A
vec_el = np.pi/2.2 # 光源的俯视角度,弧度值
vec_az = np.pi/4. # 光源的方位角度,弧度值
dx = np.cos(vec_el)*np.cos(vec_az) #光源对x 轴的影响
dy = np.cos(vec_el)*np.sin(vec_az) #光源对y 轴的影响
dz = np.sin(vec_el) #光源对z 轴的影响
b = 255*(dx*uni_x + dy*uni_y + dz*uni_z) #光源归一化
我们将这个过程叫做光源的归一化
重构图像
由于灰度值的选取范围为(0,255),为了避免数据越界,需要将生成的灰度值裁剪至0-255之间
b = b.clip(0,255)
由新的灰度值重构图像
im = Image.fromarray(gd.astype('uint8'))
其中uint8是一种数据类型。这时图像的手绘化效果已经完成了
# -*- coding: utf-8 -*-
"""
Created on Thu Mar 21 03:45:16 2019
@author: czh
"""
%clear
%reset -f
# In[*]
from PIL import Image
import numpy as np
import os
os.chdir('D:\\train\\cv')
# In[*]
from PIL import Image
import numpy as np
a = np.asarray(Image.open("AWM.jpg").convert('L'))#.convert是变成黑白的
grad = np.gradient(a)
grad
grad_x, grad_y = grad
# In[*]
b=255-a#在对应的颜色通道减去他自己变成黑白底片的效果
im=Image.fromarray(b.astype('uint8'))
im
# In[*]
c=(100/255)*a+150#区间变换,颜色比较淡的灰度的图片
im=Image.fromarray(c.astype('uint8'))
im
# In[*]
d=255*(a/255)**2#像素平方,颜色比较深的图
im=Image.fromarray(d.astype('uint8'))
im
# In[*]
a = np.asarray(Image.open("AWM.jpg").convert('L')).astype('float')
# In[*]
depth = 10 # (0-100)
grad = np.gradient(a) #取图像灰度的梯度值
grad_x, grad_y =grad #分别取横纵图像梯度值
grad_x = grad_x*depth/100.
grad_y = grad_y*depth/100.
A = np.sqrt(grad_x**2 + grad_y**2 + 1.)
uni_x = grad_x/A
uni_y = grad_y/A
uni_z = 1./A
vec_el = np.pi/2.2 # 光源的俯视角度,弧度值
vec_az = np.pi/4. # 光源的方位角度,弧度值
dx = np.cos(vec_el)*np.cos(vec_az) #光源对x 轴的影响
dy = np.cos(vec_el)*np.sin(vec_az) #光源对y 轴的影响
dz = np.sin(vec_el) #光源对z 轴的影响
b = 255*(dx*uni_x + dy*uni_y + dz*uni_z) #光源归一化
b = b.clip(0,255)
im = Image.fromarray(b.astype('uint8')) #重构图像
im
# In[*]
im.save("手绘.jpg")