本章内容较多,主要围绕KG方程进行详细叙述,喜欢科普的同学只需浏览引言即可。
下一篇文章将详细介绍Dirac方程*
(同时微分拓扑系列也会同步更新)
目录: 1. 引言 1.1 Klein-Gordon方程的引出及平面波解 1.2 外电磁场中的KG方程 2.1.1 阶跃势垒散射 Klein佯谬 2.1.2 K-G方程作为单粒子状态波函数方程的几个缺陷
1. 引言
非相对论量子力学(NRQM)的基本动力学规律是Schrödinger方程。坐标表象中的 Schrödinger方程,形式上可以根据非相对论经典粒子的能量——动量关系 式,采用“一次量子化”假设,将所得算子表达式作用到表征微观粒子状态的波函数上得到。显然,Schrödinger 方程只是 Galileo 变换不变的。应当强调指出, 除特殊情况导致波函数坍缩, 或者需用边条件表达之外, 任何势场
NRQM 只研究粒子在各种势场作用下的时空运动,不考虑不同种类粒子之间的转化。所以,它虽然不是经典理论, 却符合“力学理论”的传统概念。的Schrödinger方程自动蕴含粒子数守恒。这表明:
为了使已建立的量子理论可以应用到高能粒子,必须推广它并使其合乎狭义相对性原理(在凝聚态物理、原子物理、核和粒子物理范畴内,引力效应一般不必考虑。暂无必要让新理论符合广义相对性原理)。寻找微观粒子相对论性动力学方程的具体途径就是“一次量子化”方程式。在量子理论早期发展进程中,这个思路曾经主导建立相对论性量子力学(RQM)。以为只要改进 Schrödinger 方程,使之具有 Lorentz 变换协变性,就能提供关于微观粒子相对论性力学运动的正确描述。 Klein-Gordon 方程和 Dirac 方程就是那时沿此思路所得的两个产物。
首先提出的Klein-Gordon方程,原本就是作为Schrödinger方程向相对论性单粒子方程的推广。说“单粒子”方程,有两层含意:
i)它是通过一次量子化办 法,模拟经典单粒子的能量-动量关系所建立的;
ii)其中波函数的模平方应当具有空间概率密度分布的解释。但是,人们立即发现,K-G 方程存在许多难以合理解释的困难(详细见下)。这些困难使它不适合作为单粒子的波函数方程。这导致 20 世纪 20 年代末到 30 年代初一段短时间内放弃了 Klein-Gordon 方程。
当时,为了克服 Klein-Gordon方程的缺陷,为了得到对氢原子精细结构的正确的 RQM 解释,1928 年 Dirac 提出一个自由单粒子方程一一Dirac 方程。方程以很自然的方式导出电子自旋,中心场的解也给出了氢原子光谱精细结构的正确答案。特别是,方程还预言了带正电荷的反粒子——正电子的存在,并得到了实验证实。此外,方程还避免了概率密度不正定的困难以及对时间二阶导数问题。但是,Dirac 方程和 Klein-Gordon 方程一样,仍然存在负能解。为了解释有负无穷能级存在时为什么电子还是稳定的问题, 1930 年 Dirac 引入了“Dirac sea(狄拉克之海)” 的概念。后来理论发展表明,这是一种尚未脱离单粒子观念束溥的概念。
即便如此,以这两个方程为核心,建立在力学运动概念上的 RQM,还是因为不断出现佯谬以及更多的多粒子效应,使这两个力学方程的适用范围不时地受到局限,远不及以Schrödinger 方程为核心的 NRQM 那么自洽和自在。不过,话也得说回来,这两个方程的单粒子图像仍能适用于一些有限的情况: 当外部势场较弱而且变化平缓时,利用它们还是可以建立起近似的单粒子 RQM。详细叙述见下面的内容。
1.1 Klein-Gordon方程的引出及平面波解
按序言思路很容易构造一个相对论性自由微观粒子的动力学方程。记
引用 d'Alembert 算符
这就是自由粒子的 Klein-Gordon 方程,描述零自旋粒子(标量粒子)的相对论性自由运动。注意