长时间序列的25米全球sar卫星镶嵌数据

数据简介

1992年JAXA(Japan Aerospace Exploration Agency,日本宇宙航空研究开发机构)发射了一颗JERS-1卫星,该卫星携带有18*24m分辨率的SAR传感器。随后,JAXA又在2006年和2014年分别发射了带有SAR传感器的alos卫星和alos2卫星。本文介绍的全球SAR卫星25m 分辨率数据就源于这三颗卫星的产品。

2017年和2019年SAR影像

从2014年开始,JAXA就开始发布全球镶嵌SAR影像数据,到2023年8月已经迭代到2.3.0版本。该数据产品使用到了 JERS-1卫星 (1992-1998)、ALOS卫星 (2006-2011) 和 ALOS-2卫星 (2014 年至今) 获取的数据来创建的全球SAR镶嵌地图。截止目前,jaxa共享的全球25米镶嵌SAR影像最早为1996年,最新为2022年,情况如下表所示:

卫星 时间 分辨率 地区范围
JERS-1 1996年 25m 全球
alos1与alos2 2007-2010年、2015年-2022年 25m 全球
JERS-1 1993-1998年 25m 亚马逊地区、非洲和东南亚

智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的一些核心知识解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头和超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家和地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

叫我锐多宝

请我喝杯啤酒吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值