高等数学:第三章 微分中值定理与导数的应用(4)函数的单调性

§3.4  函数的单调性

小于零,在大于零

函数的单调性是否与导函数的符号有关呢?为此,我们进一步地作图,希望从中获得更多的感性认识。

函数上单调增加(减少),则它的图形是一条沿轴正向上升(下降)的曲线, 曲线上各点处的切线之斜率均为正的(负的),即:

  ()

这表明:函数的单调性确实与其导数的符号有关,因此,可以利用导数的符号来判定函数的单调性。

二、函数单调性的判别法

设函数上连续, 在上可导,,则

若在,则,从而

即:   函数单调增加

若在,则,从而

即:   函数单调减少

综上讨论, 我们有如下结论:

函数单调性判别法

设函数上连续, 在上可导,

(1)、若在, 则上单调增加;

(2)、若在, 则上单调减少。

注明:

1、判别法中的闭区间若换成其它各种区间(包括无穷区间)结论仍成立。

2、以后把函数单调的区间称之为函数的单调区间

【例1】讨论函数的单调性。

 解:函数的定义域为, 且

时, , 故函数在上单调减少;

时, , 故函数在上单调增加。

【例2】讨论函数的单调性。

解: 函数的定义域为

时, ,  故函数在上单减;

时,   ,  ,  故函数在上单增。

因此,可以通过求函数的一阶导数其符号不确定的点,将函数的定义域分划成若干个部分区间,再判定函数一阶导数在这些部分区间上的符号,继而可决定函数在这些部分区间上的单调性。

【例3】试确定函数  的单调区间。

解:时,函数无定义, 故函数在处不可导;

时, 导函数为

得:

于是, 点将函数定义域(  )分划成四个区间 ,函数在这四个区间上的单调性如下:

上, ,   函数单增;

   上, ,  函数单减;

     上, ,  函数单减;

  上,  ,  函数单增。

【例4】讨论函数的单调性。

【结论】

一般地,如果在某区间上的有限个点处为零, 而在其余各点处均为正(或负)时,那么在该区间上仍是单调增加(或单调减少)的。

利用函数的单调性可以证明较为复杂的函数不等式。

【例5】试证明:当时, 有

解:作辅助函数

时,   , 

故 

上单调增加,从而有

于是 上也单调增加。

从而有

即    

该证明方法十分典型,对于一些较精细的函数不等式的证明可借助些法。

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值