高等数学 · 空间解析几何与向量代数理论笔记小结

一、向量代数

1. 向量的定义

具有大小和方向的量称为向量;只有大小的量称为数量(实数)。向量可以用有向线段来表示 A B → \overrightarrow {AB} AB 来表示。

2. 向量的模

向量 α \alpha α 的长度称为向量的模,记为 ∣ α ∣ |\alpha| α。模为 1 1 1 的向量称为单位向量;长度为零的向量零向量,记为 0 0 0。对两个向量的夹角 θ \theta θ,规定 0 ≤ 0 ≤ π 0 \le0 \le \pi 00π

3. 基本单位向量

x x x 轴、 y y y 轴、 z z z轴三个坐标轴同方向的单位向量分别记为 i , j , k i,j,k i,j,k,称为基本单位向量。

4. 向量的方向角与方向余弦

非零向量 a a a 分别与 x x x轴、 y y y轴、 z z z轴三个坐标轴正向的夹角 α , β , γ \alpha, \beta, \gamma α,β,γ 称为 a a a 的方向角; cos ⁡ α , cos ⁡ β , cos ⁡ γ \cos \alpha, \cos \beta, \cos \gamma cosα,cosβ,cosγ 称为 a a a 的方向余弦。

5. 向量的坐标表示

α \alpha α 分别在 x x x轴、 y y y轴、 z z z轴三个坐标轴上的投影为 a a a, b b b, c c c,则 α = a i + b j + c k \alpha = ai + bj + ck α=ai+bj+ck,记为 a = { a , b , c } a = \{a, b, c\} a={a,b,c},并称 a , b , c a,b,c a,b,c 为向量 α \alpha α 的坐标。此时 ∣ a ∣ = a 2 + b 2 + c 2 |a|= \sqrt{a^2 + b^2 + c^2} a=a2+b2+c2
对于给定的点 M 1 ( x 1 , y 1 , z 1 ) , M 2 ( x 2 , y 2 , z 2 ) M_1(x_1, y_1, z_1), M_2(x_2, y_2, z_2) M1(x1,y1,z1),M2(x2,y2,z2),则 M 1 M 2 → = ( x 2 − x 1 ) i + ( y 2 − y 1 ) j + ( z 2 − z 1 ) k = { x 2 − x 1 , y 2 − y 1 , z 2 − z 1 } 。 \overrightarrow{M_1M_2} = (x_2 - x_1)i + (y_2 - y_1)j + (z_2 - z_1)k = \{x_2 - x_1, y_2 - y_1, z_2 - z_1\} 。 M1M2 =(x2x1)i+(y2y1)j+(z2z1)k={x2x1,y2y1,z2z1}

6. 向量的线性运算

给定向量 α , β \alpha, \beta α,β 及数量 λ \lambda λ,可定义向量的加法 α + β \alpha + \beta α+β 及数量乘法 λ α \lambda \alpha λα,统称为向量的线性运算,其满足运算律:

  1. 加法交换律 α + β = β + α \alpha + \beta = \beta + \alpha α+β=β+α;
  2. 加法结合律, ( α + β ) + γ = α + ( β + γ ) (\alpha + \beta) + \gamma = \alpha + (\beta + \gamma) (α+β)+γ=α+(β+γ);
  3. 数量乘法结合律 λ ( μ α ) = μ ( λ α ) = ( μ λ ) α \lambda(\mu \alpha) = \mu(\lambda\alpha) = (\mu\lambda)\alpha λ(μα)=μ(λα)=(μλ)α,其中 λ \lambda λ μ \mu μ 是数量;
  4. 数量乘法对于数量加法的分配律 ( λ + μ ) α = λ α + μ α (\lambda + \mu)\alpha = \lambda\alpha + \mu\alpha (λ+μ)α=λα+μα;
  5. 数量乘法对于向量加法的分配律 λ ( α + β ) = λ α + λ β \lambda(\alpha + \beta) = \lambda\alpha + \lambda\beta λ(α+β)=λα+λβ.

7. 向量的数量积

给定向量 α \alpha α β \beta β。它们的数量积定义为 α ⋅ β = ∣ α ∣ ⋅ ∣ β ∣ cos ⁡ φ \alpha \cdot \beta = |\alpha| \cdot |\beta| \cos \varphi αβ=αβcosφ,其中 φ φ φ α \alpha α β \beta β 的夹角。
数量积满足下列运算律:

  1. 交换律 α ⋅ β = β ⋅ α \alpha \cdot \beta = \beta \cdot \alpha αβ=βα;
  2. 结合律 λ ( α ⋅ β ) = ( λ α ) ⋅ β ) = α ⋅ ( λ β ) \lambda (\alpha \cdot \beta) = (\lambda\alpha) \cdot \beta) = \alpha \cdot (\lambda \beta) λ(αβ)=(λα)β)=α(λβ),其中 λ \lambda λ 是数量;
  3. 分配律 ( α + β ) ⋅ γ = ( α ⋅ γ + β ⋅ γ ) (\alpha + \beta) \cdot \gamma = (\alpha \cdot \gamma + \beta \cdot \gamma) (α+β)γ=(αγ+βγ)

8. 向量的向量积

给定两个向量 α \alpha α β \beta β,它们的向量积定义为一个向量,记为 α × β \alpha \times \beta α×β,满足:

  1. ∣ α × β ∣ = ∣ α ∣ ⋅ ∣ β ∣ sin ⁡ φ |\alpha \times \beta| = |\alpha| \cdot |\beta| \sin \varphi α×β=αβsinφ,其中 φ \varphi φ α \alpha α β \beta β 的夹角;
  2. α × β \alpha \times \beta α×β 的方向垂直于 α \alpha α β \beta β 所在的平面,并且与 α , β \alpha, \beta α,β 符合右手法则。

向量积满足下列运算律:

  1. 反交换律 α × β = − ( β × α ) \alpha \times \beta = - (\beta \times \alpha) α×β=(β×α);
  2. 结合律 λ ( α × β ) = ( λ α ) × β \lambda (\alpha \times \beta) = (\lambda \alpha) \times \beta λ(α×β)=(λα)×β
  3. 左分配律 γ × ( α + β ) = γ × α + γ × β \gamma \times (\alpha + \beta) = \gamma \times \alpha + \gamma \times \beta γ×(α+β)=γ×α+γ×β,
    右分配律 ( α + β ) × γ = α × γ + β × γ (\alpha + \beta) \times \gamma = \alpha \times \gamma + \beta \times \gamma (α+β)×γ=α×γ+β×γ.

9. 向量及其坐标的有关公式

给定向量 α = { a 1 , a 2 , a 3 } , β = { b 1 , b 2 , b 3 } \alpha = \{ a_1, a_2, a_3 \}, \beta = \{b_1, b_2, b_3\} α={a1,a2,a3},β={b1,b2,b3}及数量 λ \lambda λ,则

  1. λ α = { λ a 1 , λ a 2 , λ a 3 } , α ± β = { a 1 ± b 1 , a 2 ± b 2 , a 3 ± b 3 } \lambda \alpha = \{ \lambda a_1, \lambda a_2, \lambda a_3 \}, \alpha \pm \beta = \{a_1 \pm b_1, a_2 \pm b_2, a_3 \pm b_3 \} λα={λa1,λa2,λa3},α±β={a1±b1,a2±b2,a3±b3}.
  2. α ⋅ β = ∣ α ∣ ∣ β ∣ cos ⁡ φ = a 1 b 1 + a 2 b 2 + a 3 b 3 \alpha \cdot \beta = |\alpha| |\beta| \cos \varphi = a_1b_1 + a_2b_2 + a_3b_3 αβ=αβcosφ=a1b1+a2b2+a3b3,其中 φ \varphi φ 是两个向量的夹角,于是可推知 cos ⁡ φ = α ⋅ β ∣ α ∣ ∣ β ∣ = a 1 b 1 + a 2 b 2 + a 3 b 3 a 1 2 + a 2 2 + a 3 2 b 1 2 + b 2 2 + b 3 2 \cos \varphi = \cfrac {\alpha \cdot \beta}{|\alpha||\beta|} = \cfrac {a_1b_1 + a_2b_2 + a_3b_3}{\sqrt{a_1^2 + a_2^2 + a_3^2} \sqrt{b_1^2 + b_2^2 + b_3^2}} cosφ=αβαβ=a12+a22+a32 b12+b22+b32 a1b1+a2b2+a3b3.
  3. α × β = ∣ a 2 a 3 b 2 b 3 ∣ i − ∣ a 1 a 3 b 1 b 3 ∣ j + ∣ a 1 a 2 b 1 b 2 ∣ k = ∣ i j k a 1 a 2 a 3 b 1 b 2 b 3 ∣ \alpha \times \beta = \left | \begin{array} {cc} a_2 & a_3 \\ b_2 & b_3 \end{array} \right | i - \left | \begin{array} {cc} a_1 & a_3 \\ b_1 & b_3 \end{array} \right |j + \left | \begin{array} {cc} a_1 & a_2 \\ b_1 & b_2 \end{array} \right |k = \left | \begin{array} {ccc} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{array} \right | α×β=a2b2a3b3ia1b1a3b3j+a1b1a2b2k=ia1b1ja2b2ka3b3.
  4. α \alpha α β \beta β 平行的充要条件是它们对应的坐标成比例,即 a 1 b 1 = a 2 b 2 = a 3 b 3 \cfrac {a_1}{b_1} = \cfrac {a_2}{b_2} = \cfrac {a_3}{b_3} b1a1=b2a2=b3a3.
  5. α \alpha α β \beta β 垂直的充分必要条件是 α ⋅ β = 0 , 即 a 1 b 1 + a 2 b 2 + a 3 b 3 = 0 \alpha \cdot \beta = 0, 即a_1b_1 + a_2b_2 +a_3b_3 = 0 αβ=0,a1b1+a2b2+a3b3=0.
  6. α = { a 1 , a 2 , a 3 } ≠ 0 \alpha = \{a_1, a_2, a_3\} \neq 0 α={a1,a2,a3}=0, 则 α 0 = 1 ∣ α ∣ α \alpha^0 = \cfrac {1}{|\alpha|}\alpha α0=α1α 称为 α \alpha α 的单位化向量,它表示与 α \alpha α 同方向的单位向量,并有 α = ∣ α ∣ a 0 \alpha = |\alpha|a^0 α=αa0. 此时 α 0 = { a 1 a 1 2 + a 2 2 + a 3 2 , a 2 a 1 2 + a 2 2 + a 3 2 , a 3 a 1 2 + a 2 2 + a 3 2 } = { cos ⁡ α , cos ⁡ β , cos ⁡ γ } \alpha ^ 0 = \{\cfrac{a_1}{ \sqrt{a_1^2 + a_2^2 + a_3^2}}, \cfrac{a_2}{ \sqrt{a_1^2 + a_2^2 + a_3^2}}, \cfrac{a_3}{ \sqrt{a_1^2 + a_2^2 + a_3^2}} \} = \{ \cos \alpha, \cos \beta, \cos \gamma\} α0={a12+a22+a32 a1,a12+a22+a32 a2,a12+a22+a32 a3}={cosα,cosβ,cosγ}, 其中 α , β , γ \alpha, \beta, \gamma α,β,γ α \alpha α 的方向余弦.

二、空间中的曲面与曲线

1. 曲面与曲面方程

给定曲面 S S S 及三元方程 F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0。如果曲面 S S S 上的点的坐标都满足方程,反之,方程的解所对应的点都在 S S S 上,则称 S S S 为方程 F ( x , y , z ) = 0 F(x,y,z) = 0 F(x,y,z)=0 所表示的曲面。
两个方程 F 1 ( x , y , z ) = 0 F_1 (x,y,z) = 0 F1(x,y,z)=0 F 2 ( x , y , z ) = 0 F_2(x,y,z) = 0 F2(x,y,z)=0 表示同一个曲面的充分必要条件是它们为同解方程。

2. 空间曲线的方程

空间中的曲线 C C C 可以看做两个曲面的交线,它的一般方程为 { F ( x , y , z ) = 0 , G ( x , y , z ) = 0. \begin{cases} F(x,y,z) = 0, \\ G(x,y,z) = 0. \end{cases} {F(x,y,z)=0,G(x,y,z)=0.
空间曲线 C C C 也可表示为参数方程 { x = x ( t ) , y = y ( t ) , ( a ≤ t ≤ b ) . z = z ( t ) \begin{cases} x = x(t), \\ y = y(t), & (a \le t \le b). \\ z = z(t) \end{cases} x=x(t),y=y(t),z=z(t)(atb).

3. 旋转面方程

一条平面曲线 C C C 绕它所在平面的一条直线 L L L 旋转一周所生成的曲面称为旋转曲面(旋转面),其中曲线 C C C 称为旋转曲面的母线,直线 L L L 称为旋转曲面的旋转轴。
O y z Oyz Oyz 平面上的曲线 C : { f ( y , z ) = 0 , x = 0 C: \begin{cases} f(y,z) = 0, \\ x = 0 \end{cases} C:{f(y,z)=0,x=0 z z z 轴旋转的旋转面方程为 f ( ± x 2 + y 2 , z ) = 0 f(\pm \sqrt{x^2 + y^2}, z) = 0 f(±x2+y2 ,z)=0;
y y y 轴旋转的旋转面方程为 f ( y , ± x 2 + z 2 ) = 0. f(y, \pm \sqrt{x^2 + z^2}) = 0. f(y,±x2+z2 )=0.
类似可得其它坐标面上的曲线绕坐标轴旋转的旋转面方程.

4. 柱面方程

平行于定直线 L L L 并沿定曲线 C C C 移动的直线 l l l 所生成的曲面称为柱面,其中动直线 l l l 在移动中的每一个位置称为柱面的母线,曲线 C C C 称为柱面的准线,
O x y Oxy Oxy 平面上的曲线 C : { f ( x , y ) = 0 z = 0 C: \begin{cases} f(x,y)=0 \\ z = 0 \end{cases} C:{f(x,y)=0z=0 为准线,母线平行于 z z z轴的柱面方程为 f ( x , y ) = 0 f(x,y) = 0 f(x,y)=0.
同理方程 g ( y , z ) = 0 g(y,z) = 0 g(y,z)=0 h ( x , z ) = 0 h(x,z)=0 h(x,z)=0 分别表示母线平行于 x x x 轴和 y y y 轴的柱面。

5. 曲线在坐标面上的投影

在空间曲线 C : { F 1 ( x , y , z ) = 0 , F 2 ( x , y , z ) C: \begin{cases} F_1(x,y,z)=0, \\ F_2(x,y,z) \end{cases} C:{F1(x,y,z)=0,F2(x,y,z)的方程中。经过同解变形分别消去变量 x , y , z x,y,z x,y,z,则可得到 C C C O y z Oyz Oyz 平面、 O x z Oxz Oxz 平面及 O x y Oxy Oxy 平面上的投影曲线,分别形如 { F ( y , z ) = 0 , x = 0 , \begin{cases} F(y,z)=0, \\ x = 0, \end{cases} {F(y,z)=0,x=0, { G ( x , z ) = 0 , y = 0 , \begin{cases} G(x,z)=0, \\ y = 0, \end{cases} {G(x,z)=0,y=0, { H ( x , y ) = 0 , z = 0 , \begin{cases} H(x,y)=0, \\ z = 0, \end{cases} {H(x,y)=0,z=0,

三、空间中的平面与直线方程

1. 平面方程

  1. 点法式:给定空间中的点 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0) 及非零向量 n = { A , B , C } n=\{A,B,C\} n={A,B,C},则经过点 P 0 P_0 P0 且与 n n n 垂直的平面方程为 A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 A(x - x_0) + B(y - y_0) + C(z-z_0) = 0 A(xx0)+B(yy0)+C(zz0)=0,其中 n n n 称为平面的法向量。
  2. 一般式: A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0,其中 A , B , C A,B,C A,B,C 不全为零。
  3. 截距式: x a + y b + z c = 1 \cfrac{x}{a} + \cfrac{y}{b} + \cfrac{z}{c} = 1 ax+by+cz=1,其中 a , b , c a,b,c a,b,c 全不为零,它们分别是平面在 x , y , z x,y,z x,y,z 轴上的截距。
  4. 两个平面之间的关系:
    设两个平面 π 1 \pi _1 π1 π 2 \pi_2 π2 的法向量依次为 n 1 = { A 1 , A 1 , A 1 } n_1 = \{A_1,A_1,A_1\} n1={A1,A1,A1} n 2 = { A 2 , A 2 , A 2 } n_2 = \{A_2,A_2,A_2\} n2={A2,A2,A2} π 1 \pi_1 π1 π 2 \pi_2 π2 的夹角 θ \theta θ 规定为它们法向量的夹角(取锐角).这时 cos ⁡ θ = ∣ n 1 ⋅ n 2 ∣ ∣ n 1 ∣ ∣ n 2 ∣ = ∣ A 1 A 2 + B 1 B 2 + C 1 C 2 ∣ A 1 2 + B 1 2 + C 1 2 ⋅ A 2 2 + B 2 2 + C 2 2 \cos \theta = \cfrac {|n_1 \cdot n_2|} {|n_1| |n_2|} = \cfrac {|A_1A_2 + B_1B_2 + C_1C_2|}{\sqrt {A_1^2 + B_1^2 + C_1^2} \cdot \sqrt {A_2^2 + B_2^2 + C_2^2}} cosθ=n1n2n1n2=A12+B12+C12 A22+B22+C22 A1A2+B1B2+C1C2.
    两个平面平行的充要条件: A 1 A 2 = B 1 B 2 = C 1 C 2 \cfrac{A_1}{A_2} = \cfrac{B_1}{B_2} = \cfrac{C_1}{C_2} A2A1=B2B1=C2C1
    两个平面垂直的充要条件: A 1 A 2 + B 1 B 2 + C 1 C 2 = 0 A_1A_2 + B_1B_2 + C_1C_2 = 0 A1A2+B1B2+C1C2=0.
  5. P 0 ( x 0 , y 0 , z 0 ) P_0(x_0, y_0, z_0) P0(x0,y0,z0) 到平面 A x + B y + C x + D = 0 Ax +By+Cx+D=0 Ax+By+Cx+D=0 的距离为 d = ∣ A x 0 + B y 0 + C z 0 + D ∣ A 2 + B 2 + C 2 d = \cfrac{ |Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}} d=A2+B2+C2 Ax0+By0+Cz0+D.

2. 直线方程

  1. 一般式:将直线表示为两个平面的交线 { A 1 x + B 1 y + C 1 z + D 1 = 0 , A 2 x + B 2 y + C 2 z + D 2 = 0. \begin{cases} A_1x + B_1y + C_1z + D_1 = 0, \\ A_2x + B_2y + C_2z + D_2 = 0.\end{cases} {A1x+B1y+C1z+D1=0,A2x+B2y+C2z+D2=0.

  2. 若直线 L L L 经过点 P 0 ( x 0 , y 0 , z 0 ) P_0 (x_0,y_0, z_0) P0(x0,y0,z0) 且与向量 v = { l , m , n } ≠ 0 v = \{l,m,n\} \neq 0 v={l,m,n}=0 平行,则 L L L 的方程为

    1. 对称式: x − x 0 l = y − y 0 m = z − z 0 n ; \cfrac {x - x_0}{l} = \cfrac {y - y_0}{m} = \cfrac {z - z_0}{n}; lxx0=myy0=nzz0;
    2. 参数式: { x = x 0 + l t y = y 0 + m t , − ∞ < t < + ∞ . z = z 0 + n t . \begin{cases} x = x_0 + lt \\ y = y_0 + mt, & -\infty \lt t \lt +\infty. \\ z = z_0 + nt. \end{cases} x=x0+lty=y0+mt,z=z0+nt.<t<+.
      其中 v = l , m , n v={l,m,n} v=l,m,n 称为直线 L L L 的方向向量.
  3. 两条直线之间的关系:
    设两条直线 L 1 L_1 L1 L 2 L_2 L2 方向向量分别为 v 1 = ( l 1 , m 2 , n 1 ) , v 2 = l 2 , m 2 , n 2 v_1 = (l_1, m_2, n_1), v_2={l_2,m2,n_2} v1=(l1,m2,n1),v2=l2,m2,n2. L 1 L_1 L1 L 2 L_2 L2 的夹角 θ \theta θ 规定为它们方向向量的夹角(取锐角).于是 cos ⁡ θ = = ∣ v 1 ⋅ v 2 ∣ ∣ v 1 ∣ ∣ v 2 ∣ = ∣ l 1 l 2 + m 1 m 2 + n 1 n 2 ∣ l 1 2 + m 1 2 + n 1 2 ⋅ l 2 2 + m 2 2 + n 2 2 \cos \theta = = \cfrac {|v_1 \cdot v_2|} {|v_1| |v_2|} = \cfrac {|l_1l_2 + m_1m_2 + n_1n_2|}{\sqrt {l_1^2 + m_1^2 + n_1^2} \cdot \sqrt {l_2^2 + m_2^2 + n_2^2}} cosθ==v1v2v1v2=l12+m12+n12 l22+m22+n22 l1l2+m1m2+n1n2.
    L 1 L_1 L1 L 2 L_2 L2 平行的充要条件: l 1 l 2 = m 1 m 2 = n 1 n 2 \cfrac{l_1}{l_2} = \cfrac{m_1}{m_2} = \cfrac{n_1}{n_2} l2l1=m2m1=n2n1
    L 1 L_1 L1 L 2 L_2 L2 垂直的充要条件: l 1 l 2 + m 1 m 2 + n 1 n 2 = 0 l_1l_2 + m_1m_2 + n_1n_2 = 0 l1l2+m1m2+n1n2=0.

3. 直线与平面的关系

设直线 L L L 的方向向量为 v = { l , m , n } v=\{l,m,n\} v={l,m,n},平面 π π π 的法向量为 n = { A , B , C } n=\{A,B,C\} n={A,B,C}. L L L π π π的夹角 φ φ φ规定为 L L L与它在 π π π上投影直线 L ′ L' L的夹角(锐角).这时
sin ⁡ φ = ∣ v ⋅ n ∣ ∣ v ∣ ∣ n ∣ = ∣ l A + m B + n C ∣ l 2 + m 2 + n 2 ⋅ A 2 + B 2 + C 2 \sin \varphi = \cfrac {|v \cdot n|} {|v| |n|} = \cfrac {|lA + mB + nC|}{\sqrt {l^2 + m^2 + n^2} \cdot \sqrt {A^2 + B^2 + C^2}} sinφ=vnvn=l2+m2+n2 A2+B2+C2 lA+mB+nC.
L L L π π π 垂直的充要条件是: l A = m B = n C \cfrac {l}{A} = \cfrac {m}{B} = \cfrac {n}{C} Al=Bm=Cn
L L L π π π 平行的充要条件是: l A + m B + n C = 0 lA+mB+nC=0 lA+mB+nC=0.

四、二次曲面

由三元二次方程所表示的曲面统称为二次曲面.通常使用截痕法来判断二次曲面的形状.一些常用的二次曲面的标准形式如下:

  1. 球面:球心在点 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0), 半径为 R R R 的球面方程为 ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z ) 2 = R 2 (x - x_0)^2 + (y - y_0)^2 + (z - z)^2 = R^2 (xx0)2+(yy0)2+(zz)2=R2.

  2. 椭球面: x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \cfrac{x^2}{a^2} + \cfrac{y^2}{b^2} + \cfrac{z^2}{c^2} = 1 a2x2+b2y2+c2z2=1,其中 a > 0 , b > 0 , c > 0 a \gt 0, b \gt 0, c \gt 0 a>0,b>0,c>0.

  3. 椭圆抛物面: x 2 a 2 + y 2 b 2 = z \cfrac{x^2}{a^2} + \cfrac{y^2}{b^2} = z a2x2+b2y2=z,其中 a > 0 , b > 0 a \gt 0, b \gt 0 a>0,b>0.

  4. 椭圆锥面: x 2 a 2 + y 2 b 2 = z 2 \cfrac{x^2}{a^2} + \cfrac{y^2}{b^2} = z^2 a2x2+b2y2=z2,其中 a > 0 , b > 0 a \gt 0, b \gt 0 a>0,b>0.

  5. 单叶双曲面: x 2 a 2 + y 2 b 2 − z 2 c 2 = 1 \cfrac{x^2}{a^2} + \cfrac{y^2}{b^2} - \cfrac{z^2}{c^2} = 1 a2x2+b2y2c2z2=1,其中 a > 0 , b > 0 , c > 0 a \gt 0, b \gt 0, c \gt 0 a>0,b>0,c>0.

  6. 双叶双曲面: x 2 a 2 + y 2 b 2 − z 2 c 2 = − 1 \cfrac{x^2}{a^2} + \cfrac{y^2}{b^2} - \cfrac{z^2}{c^2} = -1 a2x2+b2y2c2z2=1,其中 a > 0 , b > 0 , c > 0 a \gt 0, b \gt 0, c \gt 0 a>0,b>0,c>0.

  • 15
    点赞
  • 58
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值