高数考研归纳 - 空间解析几何

点击此处查看高数其他板块总结

文章目录

1 向量代数

(一) 向量的基本概念

  向量:有大小有方向的量.

  向量在书面中通常使用加粗的字母表示,因为本文面向考研,为最大限度减小混淆,所以均采用在字母上方加箭头的手写体: a ⃗ \vec{a} a .

  向量的模 (长度):向量的大小,表示为   ∣ a ⃗ ∣ \,|\vec{a}| a .

  零向量:长度为   0   \,0\, 0的向量,其方向不确定.
∣ a ⃗ ∣ = 0 ⇒ a ⃗ = 0 ⃗ |\vec{a}|=0\Rightarrow\vec{a}=\vec{0} a =0a =0

  单位向量:长度为   1   \,1\, 1的向量.
∣ a ⃗ ∣ = 1 ⇒ a ⃗   为 单 位 向 量 |\vec{a}|=1\Rightarrow\vec{a}\,为单位向量 a =1a

  向量单位化 a 0 ⃗ = 1 ∣ a ⃗ ∣ a ⃗ \vec{a^0}=\frac{1}{|\vec{a}|}\vec{a} a0 =a 1a

  向径:起点为原点,终点为点   P   \,P\, P的向量   O P →   \,\overrightarrow{OP}\, OP 称为点   P   \,P\, P的向径.

  向量的坐标表示
a ⃗ = a 1 i ⃗ + b 1 j ⃗ + c 1 k ⃗ = { a 1 , b 1 , c 1 } \vec{a}=a_1{\vec{i}}+b_1{\vec{j}}+c_1{\vec{k}}=\{a_1,b_1,c_1\} a =a1i +b1j +c1k ={a1,b1,c1} ∣ a ⃗ ∣ = a 1 2 + b 1 2 + c 1 2 |\vec{a}|=\sqrt{a_1^2+b_1^2+c_1^2} a =a12+b12+c12 a 0 ⃗ = 1 ∣ a ⃗ ∣ a ⃗ = { a 1 a 1 2 + b 1 2 + c 1 2 , b 1 a 1 2 + b 1 2 + c 1 2 , c 1 a 1 2 + b 1 2 + c 1 2 } \vec{a^0}=\frac{1}{|\vec{a}|}\vec{a}=\bigg\{\frac{a_1}{\sqrt{a_1^2+b_1^2+c_1^2}},\frac{b_1}{\sqrt{a_1^2+b_1^2+c_1^2}},\frac{c_1}{\sqrt{a_1^2+b_1^2+c_1^2}}\bigg\} a0 =a 1a ={a12+b12+c12 a1,a12+b12+c12 b1,a12+b12+c12 c1}

  方向角:向量   a ⃗   \,\vec{a}\, a   x   \,x\, x轴、 y   y\, y轴及   z   \,z\, z轴正方向的夹角,分别记为   α \,\alpha α β \beta β γ \gamma γ.

  方向余弦: 即方向角的余弦: cos α \text{cos}\alpha cosα cos β \text{cos}\beta cosβ cos γ \text{cos}\gamma cosγ.
cos α = a 1 ∣ a ⃗ ∣ = a 1 a 1 2 + b 1 2 + c 1 2 \text{cos}\alpha=\frac{a_1}{|\vec{a}|}=\frac{a_1}{\sqrt{a_1^2+b_1^2+c_1^2}} cosα=a a1=a12+b12+c12 a1 cos β = b 1 ∣ a ⃗ ∣ = b 1 a 1 2 + b 1 2 + c 1 2 \text{cos}\beta=\frac{b_1}{|\vec{a}|}=\frac{b_1}{\sqrt{a_1^2+b_1^2+c_1^2}} cosβ=a b1=a12+b12+c12 b1 cos γ = c 1 ∣ a ⃗ ∣ = c 1 a 1 2 + b 1 2 + c 1 2 \text{cos}\gamma=\frac{c_1}{|\vec{a}|}=\frac{c_1}{\sqrt{a_1^2+b_1^2+c_1^2}} cosγ=a c1=a12+b12+c12 c1

  方向余弦的性质: cos 2 α + cos 2 β + cos 2 γ = 1 \text{cos}^2\alpha+\text{cos}^2\beta+\text{cos}^2\gamma=1 cos2α+cos2β+cos2γ=1 a 0 ⃗ = { cos α , cos β , cos γ } \vec{a^0}=\big\{\text{cos}\alpha, \text{cos}\beta, \text{cos}\gamma\big\} a0 ={cosα,cosβ,cosγ}

  三个重要向量
    方向向量:用   s ⃗   \,\vec{s}\, s 表示.
    法向量:用   n ⃗   \,\vec{n}\, n 表示.
    切向量:用   T ⃗   \,\vec{T}\, T   τ ⃗   \,\vec{\tau}\, τ 表示.

(二) 向量的计算

(1) 几何描述

加减法
数与向量之积 (数乘)

k a ⃗ { k > 0 ⇒ { 方 向 : k a ⃗   与   a ⃗   相 同 大 小 : a ⃗   大 小 的   k   倍 k = 0 ⇒ k a ⃗   为 零 向 量 k < 0 ⇒ { 方 向 : k a ⃗   与   a ⃗   相 反 大 小 : a ⃗   大 小 的   ∣ k ∣   倍 k\vec{a}\begin{cases} k>0\Rightarrow \begin{cases}方向:k\vec{a}\,与\,\vec{a}\,相同\\大小:\vec{a}\,大小的\,k\,倍\end{cases}\\ k=0\Rightarrow k\vec{a}\,为零向量\\ k<0\Rightarrow \begin{cases}方向:k\vec{a}\,与\,\vec{a}\,相反\\大小:\vec{a}\,大小的\,|k|\,倍\end{cases} \end{cases} ka k>0{ka a a kk=0ka k<0{ka a a k

数量积 (内积、点积、点乘)

a ⃗ ⋅ b ⃗ = ∣ a ⃗ ∣ ∣ b ⃗ ∣ ⋅ cos ( a ⃗ , b ⃗ ) ^ \vec{a}\cdot\vec{b}=|\vec{a}||\vec{b}|\cdot\text{cos}\hat{(\vec{a},\vec{b})} a b =a b cos(a ,b )^

向量积 (外积、叉积、叉乘)

a ⃗ × b ⃗ \vec{a}\times\vec{b} a ×b   方向:右手准则确定;

  大小 ∣ a ⃗ × b ⃗ ∣ = ∣ a ⃗ ∣ ∣ b ⃗ ∣ ⋅ sin ( a ⃗ , b ⃗ ) ^ |\vec{a}\times\vec{b}|=|\vec{a}||\vec{b}|\cdot\text{sin}\hat{(\vec{a},\vec{b})} a ×b =a b sin(a ,b )^

  运算性质 a ⃗ × b ⃗ = − b ⃗ × a ⃗ \vec{a}\times\vec{b}=-\vec{b}\times\vec{a} a ×b =b ×a a ⃗ × ( b ⃗ + c ⃗ ) = a ⃗ × b ⃗ + a ⃗ × c ⃗ \vec{a}\times(\vec{b}+\vec{c})=\vec{a}\times\vec{b}+\vec{a}\times\vec{c} a ×(b +c )=a ×b +a ×c

混合积 (三重积)

( a ⃗ , b ⃗ , c ⃗ ) = ( a ⃗ × b ⃗ ) ⋅ c ⃗ (\vec{a},\vec{b},\vec{c})=(\vec{a}\times\vec{b})\cdot\vec{c} (a ,b ,c )=(a ×b )c

  混合积也可记作: [ a ⃗ , b ⃗ , c ⃗ ] [\vec{a},\vec{b},\vec{c}] [a ,b ,c ]

  运算性质
( a ⃗ , b ⃗ , c ⃗ ) = ( b ⃗ , c ⃗ , a ⃗ ) = ( c ⃗ , a ⃗ , b ⃗ ) (\vec{a},\vec{b},\vec{c})=(\vec{b},\vec{c},\vec{a})=(\vec{c},\vec{a},\vec{b}) (a ,b ,c )=(b ,c ,a )=(c ,a ,b ) ( k a ⃗ , b ⃗ , c ⃗ ) = ( a ⃗ , k b ⃗ , c ⃗ ) = ( a ⃗ , b ⃗ , k c ⃗ ) = k ( a ⃗ , b ⃗ , c ⃗ ) (k\vec{a},\vec{b},\vec{c})=(\vec{a},k\vec{b},\vec{c})=(\vec{a},\vec{b},k\vec{c})=k(\vec{a},\vec{b},\vec{c}) (ka ,b ,c )=(a ,kb ,c )=(a ,b ,kc )=k(a ,b ,c ) ( a 1 ⃗ + a 2 ⃗ , b ⃗ , c ⃗ ) = ( a 1 ⃗ , b ⃗ , c ⃗ ) + ( a 2 ⃗ , b ⃗ , c ⃗ ) (\vec{a_1}+\vec{a_2},\vec{b},\vec{c})=(\vec{a_1},\vec{b},\vec{c})+(\vec{a_2},\vec{b},\vec{c}) (a1 +a2 ,b ,c )=(a1 ,b ,c )+(a2 ,b ,c )

  结合混合积的第一个性质可得, ( a ⃗ , b ⃗ , c ⃗ ) = ( a ⃗ × b ⃗ ) ⋅ c ⃗ = ( b ⃗ × c ⃗ ) ⋅ a ⃗ = ( c ⃗ × a ⃗ ) ⋅ b ⃗ (\vec{a},\vec{b},\vec{c})=(\vec{a}\times\vec{b})\cdot\vec{c}=(\vec{b}\times\vec{c})\cdot\vec{a}=(\vec{c}\times\vec{a})\cdot\vec{b} (a ,b ,c )=(a ×b )c =(b ×c )a =(c ×a )b

(2) 代数描述

α ⃗ = { a 1 , b 1 , c 1 } , β ⃗ = { a 2 , b 2 , c 2 } , γ ⃗ = { a 3 , b 3 , c 3 } \vec{\alpha}=\{a_1,b_1,c_1\},\vec{\beta}=\{a_2,b_2,c_2\},\vec{\gamma}=\{a_3,b_3,c_3\} α ={a1,b1,c1}β ={a2,b2,c2}γ ={a3,b3,c3}

加减法

  加法 α ⃗ + β ⃗ = { a 1 + a 2 ,   b 1 + b 2 ,   c 1 + c 2 } \vec{\alpha}+\vec{\beta}=\{a_1+a_2,\,b_1+b_2,\,c_1+c_2\} α +β ={a1+a2,b1+b2,c1+c2}  减法 α ⃗ − β ⃗ = { a 1 − a 2 ,   b 1 − b 2 ,   c 1 − c 2 } \vec{\alpha}-\vec{\beta}=\{a_1-a_2,\,b_1-b_2,\,c_1-c_2\} α β ={a1a2,b1b2,c1c2}

数与向量之积 (数乘)

k α ⃗ = { k a 1 ,   k b 1 ,   k c 1 } k\vec{\alpha}=\{ka_1,\,kb_1,\,kc_1\} kα ={ka1,kb1,kc1}

数量积 (内积、点积、点乘)

α ⃗ ⋅ β ⃗ = a 1 a 2 + b 1 b 2 + c 1 c 2 \vec{\alpha}\cdot\vec{\beta}=a_1a_2+b_1b_2+c_1c_2 α β =a1a2+b1b2+c1c2

  重要性质
α ⃗ ⋅ β ⃗ = β ⃗ ⋅ α ⃗ \vec{\alpha}\cdot\vec{\beta}=\vec{\beta}\cdot\vec{\alpha} α β =β α α ⃗ ⋅ α ⃗ = ∣ α ⃗ ∣ 2 \vec{\alpha}\cdot\vec{\alpha}=|\vec{\alpha}|^2 α α =α 2 α ⃗ ⋅ β ⃗ = 0 ⇔ α ⃗ ⊥ β ⃗ ⇔ a 1 a 2 + b 1 b 2 + c 1 c 2 = 0 \vec{\alpha}\cdot\vec{\beta}=0 \Leftrightarrow \vec{\alpha}\perp \vec{\beta} \Leftrightarrow a_1a_2+b_1b_2+c_1c_2=0 α β =0α β a1a2+b1b2+c1c2=0 ( α ⃗ + β ⃗ ) ⋅ γ ⃗ = α ⃗ ⋅ γ ⃗ + β ⋅ γ ⃗ (\vec{\alpha}+\vec{\beta})\cdot\vec{\gamma}=\vec{\alpha}\cdot\vec{\gamma}+\beta\cdot\vec{\gamma} (α +β )γ =α γ +βγ

向量积 (外积、叉积、叉乘)

  计算方法
a ⃗ × b ⃗ = ∣ i ⃗ j ⃗ k ⃗ a 1 a 2 a 3 b 1 b 2 b 3 ∣ \vec{a}\times\vec{b}=\begin{vmatrix} \vec{i}& \vec{j}& \vec{k}\\ a_1& a_2& a_3\\ b_1& b_2& b_3 \end{vmatrix} a ×b =i a1b1j a2b2k a3b3

  快速计算方法
a ⃗ × b ⃗ = ( ans 1 , ans 2 , ans 3 ) \vec{a}\times\vec{b}=(\text{ans}_1,\text{ans}_2,\text{ans}_3) a ×b =(ans1,ans2,ans3) ( a 1 b 1 c 1 a 1 b 1 c 1 a 2 b 2 c 2 a 2 b 2 c 2 ) \bigg(\begin{matrix} a_1& b_1& c_1& a_1& b_1& c_1 \\ a_2& b_2& c_2& a_2& b_2& c_2 \end{matrix}\bigg) (a1a2b1b2c1c2a1a2b1b2c1c2) ⇓ \Downarrow ( a 1 b 1 c 1 a 1 b 1 c 1 a 2 b 2 c 2 a 2 b 2 c 2 ) \bigg(\begin{matrix} \sout{a_1}& b_1& c_1& a_1& b_1& \sout{c_1} \\ \sout{a_2}& b_2& c_2& a_2& b_2& \sout{c_2} \end{matrix}\bigg) (a1a2b1b2c1c2a1a2b1b2c1c2) ⇓ \Downarrow ans 1 = ∣ b 1 c 1 b 2 c 2 ∣ , ans 2 = ∣ c 1 a 1 c 2 a 2 ∣ , ans 3 = ∣ a 1 b 1 a 2 b 2 ∣ \text{ans}_1=\begin{vmatrix} b_1 & c_1\\ b_2 & c_2 \end{vmatrix},\text{ans}_2=\begin{vmatrix} c_1& a_1\\ c_2 & a_2 \end{vmatrix},\text{ans}_3=\begin{vmatrix} a_1 & b_1\\ a_2 & b_2 \end{vmatrix} ans1=b1b2c1c2,ans2=c1c2a1a2,ans3=a1a2b1b2

  重要性质
a ⃗     / /     b ⃗ ⇔ α ⃗ × β ⃗ = 0 ⇔ a 1 a 2 = b 1 b 2 = c 1 c 2 \vec{a}\,\,\,/\kern -0.8em /\,\,\,\vec{b} \Leftrightarrow \vec{\alpha}\times\vec{\beta}=0 \Leftrightarrow \frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2} a //b α ×β =0a2a1=b2b1=c2c1 ∣ α ⃗ × β ⃗ ∣ = ∣ α ⃗ ∣ ∣ β ⃗ ∣ sin ( α ⃗ , β ⃗ ) ^ = 2 S Δ \big|\vec{\alpha}\times\vec{\beta}\big|=|\vec{\alpha}||\vec{\beta}|\text{sin}\hat{(\vec{\alpha},\vec{\beta})}=2S_{\Delta} α ×β =α β sin(α ,β )^=2SΔ

混合积 (三重积)

( α ⃗ , β ⃗ , γ ⃗ ) = ( α ⃗ × β ⃗ ) ⋅ γ ⃗ = ∣ a 1 b 1 c 1 a 2 b 2 c 2 a 3 b 3 c 3 ∣ (\vec{\alpha},\vec{\beta},\vec{\gamma})=(\vec{\alpha}\times\vec{\beta})\cdot\vec{\gamma}=\begin{vmatrix} a_1& b_1& c_1\\ a_2& b_2& c_2\\ a_3& b_3& c_3 \end{vmatrix} (α ,β ,γ )=(α ×β )γ =a1a2a3b1b2b3c1c2c3  重要性质三向量   α ⃗ , β ⃗ , γ ⃗   \,\vec{\alpha},\vec{\beta},\vec{\gamma}\, α ,β ,γ 共面的充要条件为   ( α ⃗ , β ⃗ , γ ⃗ ) = 0 \,(\vec{\alpha},\vec{\beta},\vec{\gamma})=0 (α ,β ,γ )=0.

(三) 向量投影

  定义:
       A B →   \,\overrightarrow{AB}\, AB   u   \,u\, u轴上的投影为   A 1 B 1   \,A_1B_1\, A1B1,记为
Prj u A B → = A 1 B 1 \text{Prj}_u\overrightarrow{AB}=A_1B_1 PrjuAB =A1B1

  性质:
Prj u a ⃗ = ∣ a ⃗ ∣ cos ( u , a ⃗ ) ^ \text{Prj}_u\vec{a}=|\vec{a}|\text{cos}\hat{(u,\vec{a})} Prjua =a cos(u,a )^ Prj u k a ⃗ = k ⋅ Prj u a ⃗ \text{Prj}_uk\vec{a}=k\cdot\text{Prj}_u\vec{a} Prjuka =kPrjua Prj u ( a ⃗ + b ⃗ ) = Prj u a ⃗ + Prj u b ⃗ \text{Prj}_u(\vec{a}+\vec{b})=\text{Prj}_u\vec{a}+\text{Prj}_u\vec{b} Prju(a +b )=Prjua +Prjub a ⃗ ⋅ b ⃗ = ∣ a ⃗ ∣ Prj a ⃗ b ⃗ = ∣ b ⃗ ∣ Prj b ⃗ a ⃗ \vec{a}\cdot\vec{b}=|\vec{a}|\text{Prj}_{\vec{a}}\vec{b}=|\vec{b}|\text{Prj}_{\vec{b}}\vec{a} a b =a Prja b =b Prjb a

(四) 向量极限问题

  解题关键
    (1) 向量模的平方等于向量的平方.
    (2) 向量极限通常要使用平方差公式,从而产生模的平方.
    (3) 能先处理的因子就先处理.

  例. 设   a ⃗ \,\vec{a} a b ⃗   \vec{b}\, b 为两个非零向量,夹角为   π 4 \,\frac{\pi}{4} 4π,其中   b ⃗   \,\vec{b}\, b 为单位向量,求:
lim ⁡ x → 0 ∣ a ⃗ + x b ⃗ ∣ − ∣ a ⃗ ∣ x . \lim\limits_{x\to 0}\frac{|\vec{a}+x\vec{b}|-|\vec{a}|}{x}. x0limxa +xb a .  解: lim ⁡ x → 0 ∣ a ⃗ + x b ⃗ ∣ − ∣ a ⃗ ∣ x = lim ⁡ x → 0 ( ∣ a ⃗ + x b ⃗ ∣ − ∣ a ⃗ ∣ ) ( ∣ a ⃗ + x b ⃗ ∣ + ∣ a ⃗ ∣ ) x ( ∣ a ⃗ + x b ⃗ ∣ + ∣ a ⃗ ∣ ) = 1 2 lim ⁡ x → 0 ( a ⃗ + x b ⃗ ) 2 − a ⃗ 2 x = 1 2 lim ⁡ x → 0 x 2 b ⃗ 2 + 2 x a ⃗ b ⃗ x = 1 \lim\limits_{x\to 0}\frac{|\vec{a}+x\vec{b}|-|\vec{a}|}{x}=\lim\limits_{x\to 0}\frac{(|\vec{a}+x\vec{b}|-|\vec{a}|)(|\vec{a}+x\vec{b}|+|\vec{a}|)}{x(|\vec{a}+x\vec{b}|+|\vec{a}|)}=\frac{1}{2}\lim\limits_{x\to 0}\frac{(\vec{a}+x\vec{b})^2-\vec{a}^2}{x}=\frac{1}{2}\lim\limits_{x\to 0}\frac{x^2\vec{b}^2+2x\vec{a}\vec{b}}{x}=1 x0limxa +xb a =x0limx(a +xb +a )(a +xb a )(a +xb +a )=21x0limx(a +xb )2a 2=21x0limxx2b 2+2xa b =1

2 空间曲面与空间曲线

(一) 空间曲面

(1) 定义

  空间曲面方程
F ( x , y , z ) = 0 \color{Purple}F(x,y,z)=0 F(x,y,z)=0

  等价命题:
    设   Σ   \,\Sigma\, Σ为空间曲面,   F ( x , y , z ) = 0   \,F(x,y,z)=0\, F(x,y,z)=0为曲面的方程:
      (1) 曲面   Σ   \,\Sigma\, Σ上任一点的坐标都是   F ( x , y , z ) = 0   \,F(x,y,z)=0\, F(x,y,z)=0的解;
      (2) 方程   F ( x , y , z ) = 0   \,F(x,y,z)=0\, F(x,y,z)=0的任一解对应的点位于曲面   Σ   \,\Sigma\, Σ上.

(2) 两类重要空间曲面

a. 柱面

  定义
     Σ : F ( x , y ) = 0 \Sigma:\color{Purple}F(x,y)=0 Σ:F(x,y)=0,母线平行于   z   \,\bm{z}\, z轴的柱面;
     Σ : F ( x , z ) = 0 \Sigma:\color{Purple}F(x,z)=0 Σ:F(x,z)=0,母线平行于   y   \,\bm{y}\, y轴的柱面;
     Σ : F ( y , z ) = 0 \Sigma:\color{Purple}F(y,z)=0 Σ:F(y,z)=0,母线平行于   x   \,\bm{x}\, x轴的柱面;

  柱面特点:
    (1) 方程缺少某个变量.
    (2) 柱面上任一点切平面都与某一直线平行.

  常见柱面方程

    椭圆柱面
x 2 a 2 + y 2 b 2 = 1 \color{Blue}\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 a2x2+b2y2=1

    双曲柱面 x 2 a 2 − y 2 b 2 = 1 \color{Blue}\frac{x^2}{a^2}-\frac{y^2}{b^2}=1 a2x2b2y2=1

    抛物柱面
x 2 = a y \color{Blue}x^2=ay x2=ay

  注意
    (1) 曲线的投影柱面:设任一空间曲线   Γ : { F ( x , y , z ) = 0 G ( x , y , z ) = 0 \,\Gamma:\begin{cases}F(x,y,z)=0\\G(x,y,z)=0\end{cases} Γ:{F(x,y,z)=0G(x,y,z)=0,求过   Γ   \,\Gamma\, Γ且平行于   z   \,z\, z轴的柱面方程:
      方程消去变量   z   \,z\, z得到的方程   H ( x , y ) = 0 \,H(x,y)=0 H(x,y)=0,即为对应曲线的投影柱面.
    (2) 柱面的投影曲线:柱面   F ( x , y ) = 0   \,F(x,y)=0\, F(x,y)=0   x O y   \,xOy\, xOy平面内的投影曲线为: Γ : { F ( x , y ) = 0 z = 0 \Gamma:\begin{cases}F(x,y)=0\\z=0\end{cases} Γ:{F(x,y)=0z=0

b. 旋转曲面

  定义:空间曲线绕某一定直线旋转一周而形成的曲面.

一般旋转曲面

  方程解法如下:

      设曲线方程和定直线方程为:
Γ : { F ( x , y , z ) = 0 G ( x , y , z ) = 0 , L : x − x 0 m = y − y 0 n = z − z 0 p \Gamma:\begin{cases}F(x,y,z)=0\\G(x,y,z)=0\end{cases},L:\frac{x-x_0}{m}=\frac{y-y_0}{n}=\frac{z-z_0}{p} Γ:{F(x,y,z)=0G(x,y,z)=0L:mxx0=nyy0=pzz0

      显然,   L   \,L\, L过点   M 0 ( x 0 , y 0 , z 0 ) \,M_0(x_0,y_0,z_0) M0(x0,y0,z0),其方向向量   s ⃗ = { m , n , p } \,\vec{s}=\{m,n,p\} s ={m,n,p}.

    step 1. 在曲线   Γ   \,\Gamma\, Γ上任取一点   M 1 ( x 1 , y 1 , z 1 ) \,M_1(x_1,y_1,z_1) M1(x1,y1,z1),经过   M 1   \,M_1\, M1绘制其旋转经过路径的圆(纬圆).

    step 2. 由几何关系,纬圆上任意一点   P ( x , y , z )   \,P(x,y,z)\, P(x,y,z)满足:
∣ M 0 M 1 → ∣ = ∣ M 0 P → ∣ |\overrightarrow{M_0M_1}|=|\overrightarrow{M_0P}| M0M1 =M0P M 1 P → ⊥ s ⃗ \overrightarrow{M_1P}\perp\vec{s} M1P s       可列两个方程: { ( x 1 − x 0 ) 2 + ( y 1 − y 0 ) 2 + ( z 1 − z 0 ) 2 = ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 { x − x 1 , y − y 1 , z − z 1 } ⋅ { m , n , p } = 0 \begin{cases}(x_1-x_0)^2+(y_1-y_0)^2+(z_1-z_0)^2=(x-x_0)^2+(y-y_0)^2+(z-z_0)^2\\ \{x-x_1,y-y_1,z-z_1\}\cdot\{m,n,p\}=0\end{cases} {(x1x0)2+(y1y0)2+(z1z0)2=(xx0)2+(yy0)2+(zz0)2{xx1,yy1,zz1}{m,n,p}=0

    step 3. 又根据   M 1   \,M_1\, M1   Γ   \,\Gamma\, Γ上,联立方程消去   x 1 \,x_1 x1 y 1 y_1 y1 z 1   z_1\, z1即可得到旋转曲面方程,即 { ( x 1 − x 0 ) 2 + ( y 1 − y 0 ) 2 + ( z 1 − z 0 ) 2 = ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 { x − x 1 , y − y 1 , z − z 1 } ⋅ { m , n , p } = 0 F ( x 1 , y 1 , z 1 ) = 0 G ( x 1 , y 1 , z 1 ) = 0 \begin{cases}(x_1-x_0)^2+(y_1-y_0)^2+(z_1-z_0)^2=(x-x_0)^2+(y-y_0)^2+(z-z_0)^2\\ \{x-x_1,y-y_1,z-z_1\}\cdot\{m,n,p\}=0\\F(x_1,y_1,z_1)=0\\G(x_1,y_1,z_1)=0\end{cases} (x1x0)2+(y1y0)2+(z1z0)2=(xx0)2+(yy0)2+(zz0)2{xx1,yy1,zz1}{m,n,p}=0F(x1,y1,z1)=0G(x1,y1,z1)=0

绕坐标轴旋转的曲面方程

  方程解法如下:

    口诀:绕谁转,谁不变, x y z   xyz\, xyz都要在.

    (1) 设曲线   Γ : { F ( x , y ) = 0 z = 0   \,\Gamma:\begin{cases}F(x,y)=0\\z=0\end{cases}\, Γ:{F(x,y)=0z=0   x O y   \,xOy\, xOy平面上的曲线,
         Γ   \,\Gamma\, Γ   x   \,x\, x轴旋转所得的旋转曲面为   Σ x : F ( x ,   ± y 2 + z 2 ) = 0 \,\Sigma_x:F(x,\,\pm\sqrt{y^2+z^2})=0 Σx:F(x,±y2+z2 )=0
         Γ   \,\Gamma\, Γ   y   \,y\, y轴旋转所得的旋转曲面为   Σ y : F ( ± x 2 + z 2 ,   y ) = 0 \,\Sigma_y:F(\pm\sqrt{x^2+z^2},\,y)=0 Σy:F(±x2+z2 ,y)=0.

    (2) 设曲线   Γ : { F ( y , z ) = 0 x = 0   \,\Gamma:\begin{cases}F(y,z)=0\\x=0\end{cases}\, Γ:{F(y,z)=0x=0   y O z   \,yOz\, yOz平面上的曲线,
         Γ   \,\Gamma\, Γ   y   \,y\, y轴旋转所得的旋转曲面为   Σ y : F ( y ,   ± x 2 + z 2 ) = 0 \,\Sigma_y:F(y,\,\pm\sqrt{x^2+z^2})=0 Σy:F(y,±x2+z2 )=0
         Γ   \,\Gamma\, Γ   z   \,z\, z轴旋转所得的旋转曲面为   Σ z : F ( ± x 2 + y 2 ,   z ) = 0 \,\Sigma_z:F(\pm\sqrt{x^2+y^2},\,z)=0 Σz:F(±x2+y2 ,z)=0.

    (3) 设曲线   Γ : { F ( x , z ) = 0 y = 0   \,\Gamma:\begin{cases}F(x,z)=0\\y=0\end{cases}\, Γ:{F(x,z)=0y=0   z O x   \,zOx\, zOx平面上的曲线,
         Γ   \,\Gamma\, Γ   x   \,x\, x轴旋转所得的旋转曲面为   Σ x : F ( x ,   ± y 2 + z 2 ) = 0 \,\Sigma_x:F(x,\,\pm\sqrt{y^2+z^2})=0 Σx:F(x,±y2+z2 )=0
         Γ   \,\Gamma\, Γ   z   \,z\, z轴旋转所得的旋转曲面为   Σ z : F ( ± x 2 + y 2 ,   z ) = 0 \,\Sigma_z:F(\pm\sqrt{x^2+y^2},\,z)=0 Σz:F(±x2+y2 ,z)=0.

(3) 其他二次曲面

  二次曲面:三元二次方程   F ( x , y , z ) = 0   \,F(x,y,z)=0\, F(x,y,z)=0所表示的曲面.

a. 球面

( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 = R 2 \color{Blue}(x-x_0)^2+(y-y_0)^2+(z-z_0)^2=R^2 (xx0)2+(yy0)2+(zz0)2=R2

   ( x 0 , y 0 , z 0 )   (x_0,y_0,z_0)\, (x0,y0,z0)为球心, R   R\, R为半径.

b. 椭球面

x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \color{Blue}\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1 a2x2+b2y2+c2z2=1

  注意系数符号为: + + + + + + + + +.

c. 圆锥面

  (1) 形成:直线绕一轴旋转.
f ( y , z ) ⇒ f ( ± x 2 + y 2 , z ) = 0 f(y,z)\Rightarrow f(\pm\sqrt{x^2+y^2},z)=0 f(y,z)f(±x2+y2 ,z)=0

  (2) 方程

z 2 = a 2 ( x 2 + y 2 )        ( a = cot α ) \color{Blue}z^2=a^2(x^2+y^2)\;\;\;(a=\text{cot}\alpha) z2=a2(x2+y2)(a=cotα)

      注意:其中   α   \,\alpha\, α称为半顶角.

  (3) 半圆锥面
z = a ( x 2 + y 2 )        ( a = cot α ) \color{Blue}z=\sqrt{a(x^2+y^2)}\;\;\;(a=\text{cot}\alpha) z=a(x2+y2) (a=cotα)

  常考   a = 1   \,a=1\, a=1时的圆锥面: z = x 2 + y 2 z=\sqrt{x^2+y^2} z=x2+y2 .

  (4) 椭圆锥面

x 2 a 2 + y 2 b 2 = z 2 \color{Blue}\frac{x^2}{a^2}+\frac{y^2}{b^2}=z^2 a2x2+b2y2=z2

d. 双曲面

  (1) 旋转单叶双曲面
    形成:双曲线绕过中心竖直轴旋转而成. x 2 a 2 − z 2 c 2 = 1 ⇒ x 2 + y 2 a 2 − z 2 c 2 = 1 \frac{x^2}{a^2}-\frac{z^2}{c^2}=1\Rightarrow\frac{x^2+y^2}{a^2}-\frac{z^2}{c^2}=1 a2x2c2z2=1a2x2+y2c2z2=1

    方程

x 2 + y 2 a 2 − z 2 c 2 = 1 \color{Blue}\frac{x^2+y^2}{a^2}-\frac{z^2}{c^2}=1 a2x2+y2c2z2=1

  (2) 旋转双叶双曲面
    形成:双曲线绕过中心水平轴旋转而成. x 2 a 2 − y 2 b 2 = 1 ⇒ x 2 a 2 − y 2 + z 2 b 2 = 1 \frac{x^2}{a^2}-\frac{y^2}{b^2}=1\Rightarrow\frac{x^2}{a^2}-\frac{y^2+z^2}{b^2}=1 a2x2b2y2=1a2x2b2y2+z2=1

    方程

x 2 a 2 − y 2 + z 2 b 2 = 1 \color{Blue}\frac{x^2}{a^2}-\frac{y^2+z^2}{b^2}=1 a2x2b2y2+z2=1

  (3) 单叶双曲面
x 2 a 2 + y 2 b 2 − z 2 c 2 = 1 \color{Blue}\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1 a2x2+b2y2c2z2=1

  注意系数符号为: + + + + + + − - .

  (4) 双叶双曲面
x 2 a 2 − y 2 b 2 − z 2 c 2 = 1 \color{Blue}\frac{x^2}{a^2}-\frac{y^2}{b^2}-\frac{z^2}{c^2}=1 a2x2b2y2c2z2=1

  注意系数符号为: + + + − - − - .

e. 抛物面

  (1) 椭圆抛物面

x 2 a 2 + y 2 b 2 = z \color{Blue}\frac{x^2}{a^2}+\frac{y^2}{b^2}=z a2x2+b2y2=z

  (2) 双曲抛物面 / 马鞍面

x 2 a 2 − y 2 b 2 = z \color{Blue}\frac{x^2}{a^2}-\frac{y^2}{b^2}=z a2x2b2y2=z

    特殊双曲抛物面(马鞍面)

z = x y \color{Blue}z=xy z=xy

(3) 空间曲面的切平面

   Σ : F ( x , y , z ) = 0 \Sigma:F(x,y,z)=0 Σ:F(x,y,z)=0 M 0 ( x 0 , y 0 , z 0 ) ∈ Σ M_0(x_0,y_0,z_0)\in\Sigma M0(x0,y0,z0)Σ,则过   M 0   \,M_0\, M0点的切平面法向量为: n ⃗ = { F x ′ ,   F y ′ ,   F z ′ } M 0 \color{Purple}\vec{n}=\{F'_x,\,F'_y,\,F'_z\}_{M_0} n ={Fx,Fy,Fz}M0

  切平面方程
F x ′ ( x 0 , y 0 , z 0 ) ( x − x 0 ) + F y ′ ( x 0 , y 0 , z 0 ) ( y − y 0 ) + F z ′ ( x 0 , y 0 , z 0 ) ( z − z 0 ) = 0 \color{Purple}F'_x(x_0,y_0,z_0)(x-x_0)+F'_y(x_0,y_0,z_0)(y-y_0)+F'_z(x_0,y_0,z_0)(z-z_0)=0 Fx(x0,y0,z0)(xx0)+Fy(x0,y0,z0)(yy0)+Fz(x0,y0,z0)(zz0)=0

(4) 空间曲面的法线

   Σ : F ( x , y , z ) = 0 \Sigma:F(x,y,z)=0 Σ:F(x,y,z)=0 M 0 ( x 0 , y 0 , z 0 ) ∈ Σ M_0(x_0,y_0,z_0)\in\Sigma M0(x0,y0,z0)Σ,则过   M 0   \,M_0\, M0点法线的方向向量为:
n ⃗ = { F x ′ ,   F y ′ ,   F z ′ } M 0 \color{Purple}\vec{n}=\{F'_x,\,F'_y,\,F'_z\}_{M_0} n ={Fx,Fy,Fz}M0

  注意:切平面某点的法向量就是该点法线的方向向量.

  法线方程
x − x 0 F x ′ ( x 0 , y 0 , z 0 ) = y − y 0 F y ′ ( x 0 , y 0 , z 0 ) = z − z 0 F z ′ ( x 0 , y 0 , z 0 ) \color{Purple}\frac{x-x_0}{F'_x(x_0,y_0,z_0)}=\frac{y-y_0}{F'_y(x_0,y_0,z_0)}=\frac{z-z_0}{F'_z(x_0,y_0,z_0)} Fx(x0,y0,z0)xx0=Fy(x0,y0,z0)yy0=Fz(x0,y0,z0)zz0

(二) 空间曲线

(1) 空间曲线方程

  一般形式 (空间曲线,即两个曲面的交线):
Γ : { F ( x , y , z ) = 0 , G ( x , y , z ) = 0 , \Gamma:\begin{cases}{\color{Purple}F(x,y,z)=0,}\\ {\color{Purple}G(x,y,z)=0,}\end{cases} Γ:{F(x,y,z)=0G(x,y,z)=0

  简化曲线方程
    有时曲线的一般方程比较复杂,不便于分析. 可以通过把两个方程相互代入简化方程. 比如:
Γ : { x 2 + y 2 + z 2 − y z = 1 , y − 2 z = 0. \Gamma:\begin{cases}x^2+y^2+z^2-yz=1,\\ y-2z=0.\end{cases} Γ:{x2+y2+z2yz=1,y2z=0.

    通过把第二个方程代入第一个方程,就可以简化   Γ   \,\Gamma\, Γ为:
Γ : { x 2 + 3 4 y 2 = 1 , y − 2 z = 0. \Gamma:\begin{cases}x^2+\frac{3}{4}y^2=1,\\ y-2z=0.\end{cases} Γ:{x2+43y2=1,y2z=0.

  参数形式
Γ : { x = φ ( t ) , y = ψ ( t ) , z = ω ( t ) , t ∈ [ α , β ] \Gamma:\color{Purple}\begin{cases}x=\varphi(t),\\ y=\psi(t),\\ z=\omega(t),\end{cases}t\in[\alpha,\beta] Γ:x=φ(t)y=ψ(t)z=ω(t)t[α,β]

(2) 空间曲线在坐标面上的投影曲线

  设空间曲线   Γ : { F ( x , y , z ) = 0 G ( x , y , z ) = 0 \,\Gamma:\begin{cases}F(x,y,z)=0\\G(x,y,z)=0\end{cases} Γ:{F(x,y,z)=0G(x,y,z)=0,按以下方法可以求得   Γ   \,\Gamma\, Γ   x O y   \,xOy\, xOy平面上的投影曲线   Γ ′   \,\Gamma'\, Γ

    step 1.   Γ   \,\Gamma\, Γ方程中的变量   z   \,z\, z消去,得到   H ( x , y ) \,H(x,y) H(x,y).
    step 2. 联立   H ( x , y )   \,H(x,y)\, H(x,y)   z = 0   \,z=0\, z=0得到投影曲线方程:
Γ ′ : { H ( x , y ) = 0 , z = 0 , \Gamma':\begin{cases}H(x,y)=0,\\z=0,\end{cases} Γ:{H(x,y)=0z=0

   H ( x , y )   H(x,y)\, H(x,y)为过   Γ   \,\Gamma\, Γ的平行于   z   \,z\, z轴的投影柱面.

  其他坐标面同理:

    消去曲线方程组中的变量   x   \,x\, x得到方程   H ( y , z ) \,H(y,z) H(y,z),再与   x = 0   \,x=0\, x=0联立即可得到   Γ   \,\Gamma\, Γ   y O z   \,yOz\, yOz平面的投影曲线:
Γ ′ : { H ( y , z ) = 0 , x = 0 , \Gamma':\begin{cases}H(y,z)=0,\\ x=0,\end{cases} Γ:{H(y,z)=0x=0

    消去曲线方程组中的变量   y   \,y\, y得到方程   H ( x , z ) \,H(x,z) H(x,z),再与   y = 0   \,y=0\, y=0联立即可得到   Γ   \,\Gamma\, Γ   z O x   \,zOx\, zOx平面的投影曲线:
Γ ′ : { H ( x , z ) = 0 , y = 0 , \Gamma':\begin{cases}H(x,z)=0,\\ y=0,\end{cases} Γ:{H(x,z)=0y=0

(3) 空间曲线的切线

曲线以参数方程形式给出

  对于空间曲线   Γ : { x = φ ( t ) , y = ψ ( t ) , z = ω ( t ) . \,\Gamma:\begin{cases}x=\varphi(t),\\ y=\psi(t),\\ z=\omega(t).\end{cases} Γ:x=φ(t),y=ψ(t),z=ω(t).,在   t = t 0   \,t=t_0\, t=t0点切线的方向向量 (称为切向量) 为:
T ⃗ = { φ ′ ( t 0 ) , ψ ′ ( t 0 ) , ω ′ ( t 0 ) } \color{Purple}\vec{T}=\{\varphi'(t_0),\psi'(t_0),\omega'(t_0)\} T ={φ(t0),ψ(t0),ω(t0)}

  切线方程: x − x 0 φ ′ ( t 0 ) = y − y 0 ψ ′ ( t 0 ) = z − z 0 ω ′ ( t 0 ) \color{Purple}\frac{x-x_0}{\varphi'(t_0)}=\frac{y-y_0}{\psi'(t_0)}=\frac{z-z_0}{\omega'(t_0)} φ(t0)xx0=ψ(t0)yy0=ω(t0)zz0

曲线以一般形式给出

  曲线如果以一般形式给出:
Γ : { F ( x , y , z ) = 0 G ( x , y , z ) = 0 \Gamma:\begin{cases}F(x,y,z)=0\\G(x,y,z)=0\end{cases} Γ:{F(x,y,z)=0G(x,y,z)=0

  则曲线切向量为:
T ⃗ = n 1 ⃗ × n 2 ⃗ = { F x ′ , F y ′ , F z ′ } × { G x ′ , G y ′ . G z ′ } \color{Purple}\vec{T}=\vec{n_1}\times\vec{n_2}=\{F'_x,F'_y,F_z'\}\times\{G'_x,G'_y.G'_z\} T =n1 ×n2 ={Fx,Fy,Fz}×{Gx,Gy.Gz}

  得到切向量和曲线上某一点即可得到切线方程.

  也可将曲线的一般式方程转化为参数式方程求解.

(4) 空间曲线的法平面

曲线以参数方程形式给出 (常考)

  对于空间曲线   Γ : { x = φ ( t ) , y = ψ ( t ) , z = ω ( t ) . \,\Gamma:\begin{cases}x=\varphi(t),\\ y=\psi(t),\\ z=\omega(t).\end{cases} Γ:x=φ(t),y=ψ(t),z=ω(t).,在   t = t 0   \,t=t_0\, t=t0点法平面的法向量为:
n ⃗ = { φ ′ ( t 0 ) , ψ ′ ( t 0 ) , ω ′ ( t 0 ) } \color{Purple}\vec{n}=\{\varphi'(t_0),\psi'(t_0),\omega'(t_0)\} n ={φ(t0),ψ(t0),ω(t0)}

  法平面方程:
φ ′ ( t 0 ) ( x − x 0 ) + ψ ′ ( t 0 ) ( y − y 0 ) + ω ′ ( t 0 ) ( z − z 0 ) = 0 \color{Purple}\varphi'(t_0)(x-x_0)+\psi'(t_0)(y-y_0)+\omega'(t_0)(z-z_0)=0 φ(t0)(xx0)+ψ(t0)(yy0)+ω(t0)(zz0)=0

曲线以一般形式给出

  曲线如果以一般形式给出:
Γ : { F ( x , y , z ) = 0 G ( x , y , z ) = 0 \Gamma:\begin{cases}F(x,y,z)=0\\G(x,y,z)=0\end{cases} Γ:{F(x,y,z)=0G(x,y,z)=0

  则曲线法平面的法向量为:
n ⃗ = n 1 ⃗ × n 2 ⃗ = { F x ′ , F y ′ , F z ′ } × { G x ′ , G y ′ . G z ′ } \color{Purple}\vec{n}=\vec{n_1}\times\vec{n_2}=\{F'_x,F'_y,F_z'\}\times\{G'_x,G'_y.G'_z\} n =n1 ×n2 ={Fx,Fy,Fz}×{Gx,Gy.Gz}

  得到法向量和曲线上某一点即可得到法平面方程.

  也可将曲线的一般式方程转化为参数式方程求解.
  再次强调:切线的切向量就是法平面的法向量.

3 空间平面与空间直线

(一) 空间平面方程

  一般式方程 A x + B y + C z + D = 0 \color{Purple}Ax+By+Cz+D=0 Ax+By+Cz+D=0

  平面法向量为   n ⃗ = { A , B , C } \,\vec{n}=\{A,B,C\} n ={A,B,C}. 尤其小心当   x \,x x y y y z   z\, z的系数存在   0   \,0\, 0时,其对应法向量分量也为   0 \,0 0,不要错把   D   \,D\, D当作法向量分量.

  点法式方程

    设   M 0 ( x 0 , y 0 , z 0 ) ∈ π \,M_0(x_0,y_0,z_0)\in\pi M0(x0,y0,z0)π,法向量   n ⃗ = { A , B , C } ⊥ π \,\vec{n}=\{A,B,C\}\perp\pi n ={A,B,C}π,则平面方程为
π : A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 \pi:\color{Purple}A(x-x_0)+B(y-y_0)+C(z-z_0)=0 π:A(xx0)+B(yy0)+C(zz0)=0

  截距式方程
π : x a + y b + z c = 1 \pi:\color{Purple}\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 π:ax+by+cz=1

  三点式方程

    设平面过不共线的三点   P i ( x i , y i , z i ) \,P_i(x_i,y_i,z_i) Pi(xi,yi,zi) i = 1 , 2 , 3 i=1,2,3 i=1,2,3.
∣ x − x 1 x − x 2 x − x 2 y − y 1 y − y 2 y − y 3 z − z 1 z − z 2 z − z 3 ∣ = 0 \color{Purple}\begin{vmatrix} x-x_1& x-x_2& x-x_2\\ y-y_1& y-y_2& y-y_3 \\ z-z_1& z-z_2& z-z_3 \end{vmatrix}=0 xx1yy1zz1xx2yy2zz2xx2yy3zz3=0

  平面束方程
    过同一直线的所有平面称为平面束.
    经过直线   L : { A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0   \,L:\begin{cases}A_1x+B_1y+C_1z+D_1=0\\ A_2x+B_2y+C_2z+D_2=0\end{cases}\, L:{A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0的平面束方程为:
A 1 x + B 1 y + C 1 z + D 1 + λ ( A 2 x + B 2 y + C 2 z + D 2 ) = 0 \color{Purple}A_1x+B_1y+C_1z+D_1+\lambda(A_2x+B_2y+C_2z+D_2)=0 A1x+B1y+C1z+D1+λ(A2x+B2y+C2z+D2)=0    要求   A 1 \,A_1 A1 B 1 B_1 B1 C 1   C_1\, C1   A 2 \,A_2 A2 B 2 B_2 B2 C 2   C_2\, C2不成比例.

  平面束方程的   Bug \,\bm{\text{Bug}} Bug:方程   A 1 x + B 1 y + C 1 z + D 1 + λ ( A 2 x + B 2 y + C 2 z + D 2 ) = 0   \,A_1x+B_1y+C_1z+D_1+\lambda(A_2x+B_2y+C_2z+D_2)=0\, A1x+B1y+C1z+D1+λ(A2x+B2y+C2z+D2)=0中并不包含平面   A 2 x + B 2 y + C 2 z + D 2 = 0 \,A_2x+B_2y+C_2z+D_2=0 A2x+B2y+C2z+D2=0. 因此,需要确定所求平面不是   A 2 x + B 2 y + C 2 z + D 2 = 0   \,A_2x+B_2y+C_2z+D_2=0\, A2x+B2y+C2z+D2=0才能使用该方程. 同理,如果确定所求平面不是   A 1 x + B 1 y + C 1 z + D 1 = 0   \,A_1x+B_1y+C_1z+D_1=0\, A1x+B1y+C1z+D1=0,那么可设平面束方程为: μ ( A 1 x + B 1 y + C 1 z + D 1 ) + A 2 x + B 2 y + C 2 z + D 2 = 0 \mu(A_1x+B_1y+C_1z+D_1)+A_2x+B_2y+C_2z+D_2=0 μ(A1x+B1y+C1z+D1)+A2x+B2y+C2z+D2=0. 最严谨的平面束方程为: μ ( A 1 x + B 1 y + C 1 z + D 1 ) + λ ( A 2 x + B 2 y + C 2 z + D 2 ) = 0 \mu(A_1x+B_1y+C_1z+D_1)+\lambda(A_2x+B_2y+C_2z+D_2)=0 μ(A1x+B1y+C1z+D1)+λ(A2x+B2y+C2z+D2)=0,但由于含有两个参数,通常不会直接使用.

(二) 空间直线方程

  一般式方程
L : { A 1 x + B 1 y + C 1 z + D 1 = 0 , A 2 x + B 2 y + C 2 z + D 2 = 0. {L:}\begin{cases}{\color{Purple}A_1x+B_1y+C_1z+D_1=0,}\\ {\color{Purple}A_2x+B_2y+C_2z+D_2=0.}\end{cases} L:{A1x+B1y+C1z+D1=0,A2x+B2y+C2z+D2=0.

  点向式方程 (对称式方程)

    设向量   s ⃗ = { m , n , p }     / /     L \,{\color{Blue}\vec{s}=\{m,n,p\}}\,\,\,/\kern -0.8em /\,\,\,L s ={m,n,p}//L,点   M 0 ( x 0 , y 0 , z 0 ) ∈ L {\color{Blue}\,M_0(x_0,y_0,z_0)}\in L M0(x0,y0,z0)L,则直线   L   \,L\, L的点向式方程为:
L : x − x 0 m = y − y 0 n = z − z 0 p L:\color{Purple}\frac{x-x_0}{m}=\frac{y-y_0}{n}=\frac{z-z_0}{p} L:mxx0=nyy0=pzz0

    其中: s ⃗ = { m , n , p }   \color{Blue}\vec{s}=\{m,n,p\}\, s ={m,n,p}为直线的方向向量.

  注意
    (1) 注意   x \,x x y y y z   z\, z的系数,必须都为   1 \,1 1   { m , n , p }   \,\{m,n,p\}\, {m,n,p}才是方向向量.
      如: x − 1 − 2 = 2 y + 1 − 4 = z 1   \frac{x-1}{-2}=\frac{2y+1}{-4}=\frac{z}{1}\, 2x1=42y+1=1z的法向量就是: s ⃗ = { − 2 , − 2 , 1 } \vec{s}=\{-2,-2,1\} s ={2,2,1}
    (2) 求出的点向式方程, m m m n n n p   p\, p注意化简.

  参数式方程

    设向量   s ⃗ = { m , n , p }     / /     L \,{\color{Blue}\vec{s}=\{m,n,p\}}\,\,\,/\kern -0.8em /\,\,\,L s ={m,n,p}//L,点   M 0 ( x 0 , y 0 , z 0 ) ∈ L {\color{Blue}\,M_0(x_0,y_0,z_0)}\in L M0(x0,y0,z0)L,则直线   L   \,L\, L的参数式方程为: L : { x = x 0 + m t , y = y 0 + n t , z = z 0 + p t . L:\color{Purple}\begin{cases}x=x_0+mt,\\ y=y_0+nt,\\ z=z_0+pt.\end{cases} L:x=x0+mt,y=y0+nt,z=z0+pt.

  两点式方程
    已知直线上两点   M 1 ( x 1 , y 1 , z 1 ) \,M_1(x_1,y_1,z_1) M1(x1,y1,z1) M 2 ( x 2 , y 2 , z 2 ) M_2(x_2,y_2,z_2) M2(x2,y2,z2),直线方程为:
x − x 1 x 2 − x 1 = y − y 1 y 2 − y 1 = z − z 1 z 2 − z 1 \color{Purple}\frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y_1}=\frac{z-z_1}{z_2-z_1} x2x1xx1=y2y1yy1=z2z1zz1

(三) 求距离

(1) 两点之间的距离

d = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 + ( z 2 − z 1 ) 2 \color{Purple}d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2} d=(x2x1)2+(y2y1)2+(z2z1)2

(2) 点到平面的距离

  设平面   π : A x + B y + C z + D = 0 \,\pi:Ax+By+Cz+D=0 π:Ax+By+Cz+D=0,且   M 0 ( x 0 , y 0 , z 0 ) ∉ π \,M_0(x_0,y_0,z_0)\notin\pi M0(x0,y0,z0)/π,则   M 0   \,M_0\, M0到平面   π   \,\pi\, π的距离为: d = ∣ A x 0 + B y 0 + C z 0 + D ∣ A 2 + B 2 + C 2 \color{Purple}d=\frac{|Ax_0+By_0+Cz_0+D|}{\sqrt{A^2+B^2+C^2}} d=A2+B2+C2 Ax0+By0+Cz0+D

(3) 两平行平面之间的距离

   π 1 : A x + B y + C z + D 1 = 0   \pi_1:Ax+By+Cz+D_1=0\, π1:Ax+By+Cz+D1=0   π 2 : A x + B y + C z + D 2 = 0   \,\pi_2:Ax+By+Cz+D_2=0\, π2:Ax+By+Cz+D2=0为两个平行平面,则二者距离为: d = ∣ D 2 − D 1 ∣ A 2 + B 2 + C 2 \color{Purple}d=\frac{|D_2-D_1|}{\sqrt{A^2+B^2+C^2}} d=A2+B2+C2 D2D1

(4) 点到直线的距离

    考虑以   ∣ s ⃗ ∣   \,|\vec{s}|\, s 为底, h   h\, h为高的三角形面积:

∣ M 0 M 1 → × s → ∣ = ∣ s → ∣ ⋅ h \color{Purple}\big|\overrightarrow{M_0M_1}\times{\overrightarrow{s}}\big|=\big|\overrightarrow{s}\big|\cdot h M0M1 ×s =s h

  注意:向量   s ⃗   \,\vec{s}\, s   M M 0 →   \,\overrightarrow{MM_0}\, MM0 一定要相同起点相同终点,否则求出的就是另一个三角形的面积.

(5) 两异面直线之间的距离

L 1 : x − x 1 m 1 = y − y 1 n 1 = z − z 1 p 1 L_1:\frac{x-x_1}{m_1}=\frac{y-y_1}{n_1}=\frac{z-z_1}{p_1} L1:m1xx1=n1yy1=p1zz1 L 2 : x − x 2 m 2 = y − y 2 n 2 = z − z 2 p 2 L_2:\frac{x-x_2}{m_2}=\frac{y-y_2}{n_2}=\frac{z-z_2}{p_2} L2:m2xx2=n2yy2=p2zz2
   L 1   L_1\, L1   L 2   \,L_2\, L2异面的充分必要条件:
( s 1 → × s 2 → ) ⋅ M 1 M 2 → ≠ 0 \color{Purple}(\overrightarrow{s_1}\times\overrightarrow{s_2})\cdot\overrightarrow{M_1M_2}\neq0 (s1 ×s2 )M1M2 =0

  求异面直线之间距离的步骤
    step 1:   M 1   \,M_1\, M1作直线   L 2 ′     / /     L 2 \,L'_2\,\,\,/\kern -0.8em /\,\,\,L_2 L2//L2,求出   L 1   \,L_1\, L1   L 2 ′   \,L'_2\, L2所形成的平面   π \,\pi π.
    step 2: 两异面直线的距离即为   M 2 ( x 2 , y 2 , z 2 )   \,M_2(x_2,y_2,z_2)\, M2(x2,y2,z2)到平面   π   \,\pi\, π之间的距离.

(6) 直线到平行平面的距离

  可以直接转化为点到平面的距离问题. 即在直线上任取一点到平面的距离.

(四) 求夹角

(1) 两向量的夹角

  由   a ⃗ ⋅ b ⃗ = ∣ a ⃗ ∣ ⋅ ∣ b ⃗ ∣   cos θ \,\vec{a}\cdot\vec{b}=|\vec{a}|\cdot|\vec{b}|\,\text{cos}\theta a b =a b cosθ

θ = arccos a ⃗ ⋅ b ⃗ ∣ a ⃗ ∣ ⋅ ∣ b ⃗ ∣ \theta=\text{arccos}\frac{\vec{a}\cdot\vec{b}}{|\vec{a}|\cdot|\vec{b}|} θ=arccosa b a b

(2) 两平面的夹角

  设两个平面   π 1 : A 1 x + B 1 y + C 1 z + D 1 = 0 \,\pi_1:A_1x+B_1y+C_1z+D_1=0 π1:A1x+B1y+C1z+D1=0 π 2 : A 2 x + B 2 y + C 2 z + D 2 = 0   \pi_2:A_2x+B_2y+C_2z+D_2=0\, π2:A2x+B2y+C2z+D2=0,法向量分别为   n 1 ⃗ = { A 1 , B 1 , C 1 } \,\vec{n_1}=\{A_1,B_1,C_1\} n1 ={A1,B1,C1} n 2 ⃗ = { A 2 , B 2 , C 2 } \vec{n_2}=\{A_2,B_2,C_2\} n2 ={A2,B2,C2},夹角为   θ    ( 0 ⩽ θ ⩽ π 2 ) \,\theta\;(0\leqslant\theta\leqslant\frac{\pi}{2}) θ(0θ2π),由   cos θ = ∣ cos ( n 1 ⃗ , n 2 ⃗ ) ^ ∣ = n 1 ⃗ ⋅ n 2 ⃗ ∣ n 1 ⃗ ∣ ⋅ ∣ n 2 ⃗ ∣ , \,\text{cos}\theta=|\text{cos}\hat{(\vec{n_1},\vec{n_2})}|=\frac{\vec{n_1}\cdot\vec{n_2}}{|\vec{n_1}|\cdot|\vec{n_2}|}, cosθ=cos(n1 ,n2 )^=n1 n2 n1 n2

θ = arccos n 1 ⃗ ⋅ n 2 ⃗ ∣ n 1 ⃗ ∣ ⋅ ∣ n 2 ⃗ ∣ \theta=\text{arccos}\frac{\vec{n_1}\cdot\vec{n_2}}{|\vec{n_1}|\cdot|\vec{n_2}|} θ=arccosn1 n2 n1 n2

(3) 两直线的夹角

L 1 : x − x 1 m 1 = y − y 1 n 1 = z − z 1 p 1 L_1:\frac{x-x_1}{m_1}=\frac{y-y_1}{n_1}=\frac{z-z_1}{p_1} L1:m1xx1=n1yy1=p1zz1 L 2 : x − x 2 m 2 = y − y 2 n 2 = z − z 2 p 2 L_2:\frac{x-x_2}{m_2}=\frac{y-y_2}{n_2}=\frac{z-z_2}{p_2} L2:m2xx2=n2yy2=p2zz2 s ⃗ 1 = { m 1 , n 1 , p 1 } , s ⃗ 2 = { m 2 , n 2 , p 2 } \vec{s}_1=\{m_1,n_1,p_1\},\vec{s}_2=\{m_2,n_2,p_2\} s 1={m1,n1,p1}s 2={m2,n2,p2}

  设两直线夹角为   θ    ( 0 ⩽ θ ⩽ π 2 ) \,\theta\;(0\leqslant\theta\leqslant\frac{\pi}{2}) θ(0θ2π),则:
θ = arccos s 1 ⃗ ⋅ s 2 ⃗ ∣ s 1 ⃗ ∣ ⋅ ∣ s 2 ⃗ ∣ \theta=\text{arccos}\frac{\vec{s_1}\cdot\vec{s_2}}{|\vec{s_1}|\cdot|\vec{s_2}|} θ=arccoss1 s2 s1 s2

(4) 直线与平面的夹角

L 1 : x − x 0 m = y − y 0 n = z − z 0 p L_1:\frac{x-x_0}{m}=\frac{y-y_0}{n}=\frac{z-z_0}{p} L1:mxx0=nyy0=pzz0 π : A x + B y + C z + D = 0 \pi:Ax+By+Cz+D=0 π:Ax+By+Cz+D=0 s ⃗ = { m , n , p } , n ⃗ = { A , B , C } \vec{s}=\{m,n,p\},\vec{n}=\{A,B,C\} s ={m,n,p}n ={A,B,C}

  设   L   \,L\, L   π   \,\pi\, π的夹角为   θ    ( 0 ⩽ θ ⩽ π 2 ) \,\theta\;(0\leqslant\theta\leqslant\frac{\pi}{2}) θ(0θ2π),则
θ = arcsin s ⃗ ⋅ n ⃗ ∣ s ⃗ ∣ ⋅ ∣ n ⃗ ∣ \theta=\text{arcsin}\frac{\vec{s}\cdot\vec{n}}{|\vec{s}|\cdot|\vec{n}|} θ=arcsins n s n

(五) 平面与直线重要解题思路

直线

  (1) 出现两点的反应:立即得到两点形成的向量.

  (2) 出现三点的反应:立即得到两个由同一点射出的向量.

  (3) 求直线方程的核心思路:找到一点和直线的方向向量.

  (4) 将直线的点向式方程转换为一般式方程

    比如   x − 1 2 = y 1 = z + 1 3 \,\frac{x-1}{2}=\frac{y}{1}=\frac{z+1}{3} 2x1=1y=3z+1
    一般式方程为: { x − 1 2 = y 1 x − 1 2 = z + 1 3 ⇒ { x − 2 y − 1 = 0 3 x − 2 z − 5 = 0 \begin{cases}\frac{x-1}{2}=\frac{y}{1}\\\frac{x-1}{2}=\frac{z+1}{3}\end{cases}\Rightarrow\begin{cases}x-2y-1=0\\3x-2z-5=0\end{cases} {2x1=1y2x1=3z+1{x2y1=03x2z5=0

  (5) 将直线的一般式方程转换为点向式方程
    step 1:(确定直线上的一点):任找一点,符合一般式方程.
    step 2:(确定直线方向向量):确定一般式方程中的两个平面方程的法向量,将两个法向量做叉乘即可得到直线的方向向量.

  (6) 将直线的点向式方程转换为参数式方程
    令   L : x − x 0 m = y − y 0 n = z − z 0 p = t ⇒ { x = x 0 + m t , y = y 0 + n t , z = z 0 + p t . \,L:\frac{x-x_0}{m}=\frac{y-y_0}{n}=\frac{z-z_0}{p}=t\Rightarrow\begin{cases}x=x_0+mt,\\ y=y_0+nt,\\ z=z_0+pt.\end{cases} L:mxx0=nyy0=pzz0=tx=x0+mt,y=y0+nt,z=z0+pt.

  (7) 将直线的参数式方程转换为点向式方程
     L : { x = x 0 + m t , y = y 0 + n t , z = z 0 + p t . ⇒ { x − x 0 m = t , y − y 0 n = t , z − z 0 p = t . ⇒ x − x 0 m = y − y 0 n = z − z 0 p L:\begin{cases}x=x_0+mt,\\ y=y_0+nt,\\ z=z_0+pt.\end{cases}\Rightarrow \begin{cases}\frac{x-x_0}{m}=t,\\ \frac{y-y_0}{n}=t,\\ \frac{z-z_0}{p}=t.\end{cases}\Rightarrow\frac{x-x_0}{m}=\frac{y-y_0}{n}=\frac{z-z_0}{p} L:x=x0+mt,y=y0+nt,z=z0+pt.mxx0=t,nyy0=t,pzz0=t.mxx0=nyy0=pzz0

  (8) 将直线的参数式方程转换为一般式方程:先转换为点向式方程.

  (9) 将直线的一般式方程转换为参数式方程:先转换为点向式方程.

平面

  (1) 求平面方程的核心思路:找到平面内一点和平面的法向量.

  (2) 平面与平面平行 π 1 : A 1 x + B 1 y + C 1 z + D 1 = 0     / /     π 2 : A 2 x + B 2 y + C 2 z + D 2 = 0 \pi_1:A_1x+B_1y+C_1z+D_1=0\,\,\,/\kern -0.8em /\,\,\,\pi_2:A_2x+B_2y+C_2z+D_2=0 π1:A1x+B1y+C1z+D1=0//π2:A2x+B2y+C2z+D2=0,则   A 1 A 2 = B 1 B 2 = C 1 C 2 \,\frac{A_1}{A_2}=\frac{B_1}{B_2}=\frac{C_1}{C_2} A2A1=B2B1=C2C1.

  (3) 求平行于已知平面的平面:设一般式方程 (仅   D   \,D\, D不同),利用其他条件求出   D   \,D\, D.

  (4) 求平行平面之间的等距平面:先得到法向量   n ⃗ = { a , b , c } \,\vec{n}=\{a,b,c\} n ={a,b,c},然后设一般方程   a x + b y + c z + D = 0 \,ax+by+cz+D=0 ax+by+cz+D=0,利用等距关系解出   D   \,D\, D即可.

  (5) 求垂直于已知平面的平面
    通常有两种思路:
      a. 将已知平面的法向量与待求平面的某一方向向量叉乘.
      b. 平面束方程.

直线与平面

  (1) 先求交点:只要看出已知直线与已知平面相交,就要立刻求出交点.

  (2) 求直线点向式方程与平面的交点:将直线转换为参数方程,再代入平面求解.

  (3) 求平行于两条直线的平面方程 (或过直线平行于另一条直线的平面方程、过两条直线的平面方程):这两条直线方向向量的叉乘,即为所求平面的法向量 (因为平面与两条直线都平行).

(六) 对称点问题

  问法:求过点   M ( a 1 , b 1 , c 1 )   \,M(a_1,b_1,c_1)\, M(a1,b1,c1)关于平面   π : A x + B y + C z + D = 0   \,\pi:Ax+By+Cz+D=0\, π:Ax+By+Cz+D=0的对称点的坐标.

  思路
    step 1: 过   M   \,M\, M点作垂直于平面   π   \,\pi\, π的直线   L : x − a 1 A = y − b 1 B = z − c 1 C \,L:\frac{x-a_1}{A}=\frac{y-b_1}{B}=\frac{z-c_1}{C} L:Axa1=Byb1=Czc1,写出直线   L   \,L\, L的参数式方程;
    step 2: 将直线   L   \,L\, L代入平面方程解得交点   T   \,T\, T的坐标.
    step 3: 设对称点坐标为   M ′ ( a , b , c )   \,M'(a,b,c)\, M(a,b,c),由   M ′ \,M' M T T T M   M\, M三点的中点关系解出   a 、 b 、 c   \,a、b、c\, abc.

  |PM|+|MQ|最小:中学解析几何经典问题的进化版. 已知两点   P \,P P Q Q Q,在平面   π   \,\pi\, π上找一点   M   \,M\, M,使得   ∣ P M ∣ + ∣ M Q ∣   \,|PM|+|MQ|\, PM+MQ最小. 找   P \,P P Q   Q\, Q两点任一点(比如   P \,P P)关于   π   \,\pi\, π的对称点   P ′   \,P'\, P,则   P ′ Q   \,P'Q\, PQ   π   \,\pi\, π的交点即为所求   M \,M M.

(七) 共线共面问题

  (1) 判断三点是否共线:三点得到的两个向量成比例则共线,不成比例则不共线.

  (2) 判断两条直线是否共面 ( s 1 ⃗ × s 2 ⃗ ) ⋅ M 1 M 2 → = 0 (\vec{s_1}\times\vec{s_2})\cdot\overrightarrow{M_1M_2}=0 (s1 ×s2 )M1M2 =0.

  (3) 判断三个向量是否共面:检查混合积:   ( α ⃗ , β ⃗ , γ ⃗ ) = 0 \,(\vec{\alpha},\vec{\beta},\vec{\gamma})=0 (α ,β ,γ )=0.

  (4) 三点确定的平面:三点构造两个向量,叉乘即得平面法向量,使用点法式得到平面方程.

(八) 投影直线问题

  求直线在平面上的投影直线,有下面三种思路:

    (1) 使用平面束,平面束确定的平面(与平面已知垂直)与已知平面的交线即为所求投影直线.

    (2) 先求直线与平面的交点,再通过将直线方向向量与已知平面法向量叉乘,得到过直线与已知平面垂直的平面的法向量,进而求出该平面的点法式方程,将该平面与已知平面联立即为所求投影直线.

    (3) 设过直线与已知平面垂直的平面的一般式方程求解.

(九) 直线绕坐标轴旋转形成曲面

    设   L : x − a m = y − b n = z − c p   \,L:\frac{x-a}{m}=\frac{y-b}{n}=\frac{z-c}{p}\, L:mxa=nyb=pzc为三维空间的直线,求直线   L   \,L\, L   z   \,z\, z轴旋转而成曲面方程. 求法如下:

    step 1:设   L   \,L\, L   z   \,z\, z轴旋转而成的曲面为   Σ   \,\Sigma\, Σ,任取   M ( x , y , z ) ∈ Σ \,M(x,y,z)\in\Sigma M(x,y,z)Σ M   M\, M所在的圆位于   L   \,L\, L上的点为   M 0 ( x 0 , y 0 , z ) ∈ L \,M_0(x_0,y_0,z)\in L M0(x0,y0,z)L,圆心为   T ( 0 , 0 , z ) \,T(0,0,z) T(0,0,z).

    step 2:由   ∣ M T ∣ = ∣ M 0 T ∣ \,|MT|=|M_0T| MT=M0T,得   x 2 + y 2 = x 0 2 + y 0 2 \,x^2+y^2=x_0^2+y_0^2 x2+y2=x02+y02.

    step 3:因为   M 0 ( x 0 , y 0 , z ) ∈ L \,M_0(x_0,y_0,z)\in L M0(x0,y0,z)L,所以   L : x 0 − a m = y 0 − b n = z − c p \,L:\frac{x_0-a}{m}=\frac{y_0-b}{n}=\frac{z-c}{p} L:mx0a=ny0b=pzc,分别解出   x 0 \,x_0 x0 y 0   y_0\, y0关于   z   \,z\, z的关系. 代回   x 2 + y 2 = x 0 2 + y 0 2   \,x^2+y^2=x_0^2+y_0^2\, x2+y2=x02+y02即为曲面方程.

4 椭圆切线方程与椭球体切面方程

  (1) 切线方程

    设椭圆方程: x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 a2x2+b2y2=1

    则过椭圆上一点   P ( x 0 , y 0 )   \,P(x_0,y_0)\, P(x0,y0)的切线方程为:
x x 0 a 2 + y y 0 b 2 = 1 \color{Purple}\frac{xx_0}{a^2}+\frac{yy_0}{b^2}=1 a2xx0+b2yy0=1

  注意:题目给出切线与坐标轴交点   ( m , 0 )   \,(m,0)\, (m,0)和椭圆方程,也可求出切线方程:
    step1. 设切点坐标为   ( x 0 , y 0 ) \,(x_0, y_0) (x0,y0),则切线方程为 x x 0 a 2 + y y 0 b 2 = 1 \frac{xx_0}{a^2}+\frac{yy_0}{b^2}=1 a2xx0+b2yy0=1.
    step2. 代入   ( m , 0 )   \,(m,0)\, (m,0)即可解出切线方程.

  (2) 切面方程

    设椭球体方程: x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1 a2x2+b2y2+c2z2=1

    则过椭球体上一点   P ( x 0 , y 0 , z 0 )   \,P(x_0,y_0,z_0)\, P(x0,y0,z0)的切线方程为:
x x 0 a 2 + y y 0 b 2 + z z 0 c 2 = 1 \color{Purple}\frac{xx_0}{a^2}+\frac{yy_0}{b^2}+\frac{zz_0}{c^2}=1 a2xx0+b2yy0+c2zz0=1

  • 4
    点赞
  • 39
    收藏
    觉得还不错? 一键收藏
  • 6
    评论
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值