这一题我今天的做的时候觉得再简单不过了,不知道为什么等级是困难级别的,真的是觉得没有什么难点的
4 两个排序数组的中位数
给定两个大小为 m 和 n 的有序数组 nums1 和 nums2 。
请找出这两个有序数组的中位数。要求算法的时间复杂度为 O(log (m+n)) 。
你可以假设 nums1 和 nums2 不同时为空。
示例 1:
nums1 = [1, 3]
nums2 = [2]
中位数是 2.0
示例 2:
nums1 = [1, 2]
nums2 = [3, 4]
中位数是 (2 + 3)/2 = 2.5
网站给出的方法是递归法,我觉得写得太绕了,把简单问题给搞复杂了。其实我的思路很简单
1. 先把A, B两个数组整合到C数组里,然后用sorted排序方法将C数组里元素按照从小到大的顺序依次排序
2. 再根据C数组里元素的个数依次选取中位数;如果个数为偶数,则取中间两个元素的中间值;如果个数为奇数。则直接取中间元素作为中位数了
是不是觉得很简单,我觉得大部分人应该是和我一样的想法的
代码如下:
def findMedianSortedArrays(self, nums1, nums2):
SumArray = []
SumArray.extend(nums1)
SumArray.extend(nums2)
SumArray = sorted(SumArray)
midNum = 0.0
if len(SumArray)%2 == 0:
midNum = (SumArray[int(len(SumArray)/2) - 1] + SumArray[int(len(SumArray)/2)])/2
else:
midNum = SumArray[int((len(SumArray) - 1)/2)]
return midNum
执行时间如下图