
我们之前的课程接触最多的是模拟频率f,包括在模拟电路、高频电路以及传感器课程上,都是以f作为频率响应函数的横坐标。使用f的好处是其真实反映了实际系统的工作情况,从0到∞,反映了实际模拟信号振荡速度的快慢。
模拟角频率Ω=2πf,过去我们常将ω作为模拟角频率,写成cos(ωt),这种写法实际上是不正确的,应该写成cos(Ωt)来描述模拟余弦函数。此时Ω的取值也是从0到∞,这体现出模拟(角)频率没有周期性的特点。
数字角频率ω则是完全颠覆了我们过往对于频率的认识,首先要明确的是数字信号的获得是通过对模拟信号采样的方式。它的引入可以从cos(Ωt)开始。cos(Ωt)中相位变化一个周期(2π)所需的时间为T,那么模拟角频率定义成Ω=2π/T。对于该余弦信号,采样之后变成了一个离散的数字序列,此时再谈论过了多少时间走完一个周期已经没有意义,而是过了间隔N相位刚好变化一个周期。因此数字角频率推导出为ω=2π/N,余弦信号则为cos(ωn)。既然N是由对应一段时间T采样而来,那么N=T*Fs (Fs为采样率),自然而然,ω=Ω/Fs。简单来说,数字角频率ω是模拟角频率Ω对于采样率Fs的归一化,这是数字角频率ω的核心要义。
由于数字信号是通过抽样而来,意味着只有在短暂的采样窗口时间才能看到模拟信号的取值,而其他情况下则是看不见的。我们将任意离散信号表示为复数