matlab求极限分布,中心极限定理的Matlab演示

本文通过Matlab演示了中心极限定理,验证了当大量独立随机变量相加时,其均值分布趋向于正态分布。文章详细介绍了辛钦、德莫佛-拉普拉斯、林德贝尔格和李亚普洛夫中心极限定理,并通过实操展示不同分布叠加后的直方图,最终进行正态性检验,证明了在一定条件下,随机变量之和近似服从正态分布。
摘要由CSDN通过智能技术生成

中心极限定理的Matlab演示

实验要求

用Matlab验证中心极限定理

实验原理

中心极限定理是概率论中的一组定理。中心极限定理说明,大量相互独立的随机变量,其均值的分布以正态分布为极限。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从正态分布的条件。如果一个随机变量能够分解为独立同分布的随机变量序列之和,则可以直接利用中心极限定理进行解决。总之,恰当地使用中心极限定理解决实际问题有着极其重要意义。

中心极限定理有许多不同的表现形式

一)辛钦中心极限定理

设随机变量$x_1,x_2\cdots,x_n$相互独立,服从同一分布且有有限的数学期望a和方差σ2,则随机变量$\bar{x}=\frac{\sum x_i}{n}$,在n无限增大时,服从参数为a和 $\frac{\sigma^2}{n} $ 的正态分布即n→∞时,

$\bar{x} \to N(a,\frac{\sigma^2}{n})$

将该定理应用到抽样调查,就有这样一个结论:如果抽样总体的数学期望a和方差σ2是有限的,无论总体服从什么分布,从中抽取容量为n的样本时,只要n足够大,其样本平均数的分布就趋于数学期望为a,方差为σ2 / n的正态分布。

二)德莫佛——拉普拉斯中心极限定理

设$\mu_n$是n次独立试验中事件A发生的次数,事件A在每次试验中发生的概率为P,则当n无限大时,频率设$\frac{\mu_n}{n}$趋于服从参数为p,$\frac{p(1-p)}{n}$的正态分布。即:

$\frac{\mu_n}{n} \to N(p,\frac{p(1-p)}{n})$

该定理是

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值