利用matlab验证中心极限定理

该博客探讨了中心极限定理在判断样本所属类别概率中的应用。通过MATLAB代码模拟了每次抽取50个样本,重复1000次的过程,观察样本均值的分布。非均匀分布的数据被用于增强理解。最后,展示了样本均值的直方图,强调了中心极限定理在处理多类别问题时,如使用GMM(高斯混合模型)的重要性。
摘要由CSDN通过智能技术生成

中心定理用途:判断某个样本是某个类的概率。当涉及到多个类时,用GMM
% %中心极限定理的验证
% %每次抽取50个样本,抽取1000次
clear;
clc;
a=zeros(1,1000);
idx=1:1000;
%
for i=1:1000
tmp=0;
for j=1:50
%tmp=tmp+randi(100);均值分布
tmp=tmp+randi(50)+randi(50);%非均值
end
a(i)=tmp/50;
end
hst = histcounts(a,0:1:100);%收集1000次采样的均值的分布
plot(1:100,hst)
%% 下面是matlab官方给的代码
% numsamples = 50;
% numbins = 20;
% r = rand(numsamples,1);
% hst = histcounts(r,numbins);
% scope = dsp.ArrayPlot;
% scope.XOffset = 0;
% scope.SampleIncrement = 1/numbins;
% scope.PlotType = ‘Stem’;
% scope.YLimits = [0, max(hst)+1];
% numbins = 201;
% numtrials = 100;
% r = zeros(numsamples,1);
% scope.SampleIncrement = 1/numbins;
% scope.PlotType = ‘Stairs’;
% show(scope);
% for ii = 1:numtrials
% r = rand(numsamples,1)+r;
% hst = histcounts(r/ii,0:1/numbins:1);
% scope.YLimits = [min(hst)-1, max(hst)+1];
% scope(hst’)
% pause(0.1);
% end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值