matlab求因子,因子分析MATLAB程序源代码

该博客展示了如何在MATLAB中进行因子分析和主成分分析(PCA)。通过加载数据,标准化处理,使用SVD进行PCA,计算贡献率、T2统计量和SPE统计量,并绘制SPE和T2图,以及贡献图。提供了详细的MATLAB代码示例。
摘要由CSDN通过智能技术生成

clear all;

DATA=load('D:0.m');

DATA=double(DATA);

DATA=DATA';

TESTDATA=load('D:14f.m');

TESTDATA=double(TESTDATA);

% DATA=load('D:正常.txt');

% DATA=double(DATA);

% DATA=DATA(:,3:12);

% TESTDATA=load('D:异常.txt');

% TESTDATA=double(TESTDATA);

% TESTDATA=TESTDATA(:,3:12);

[Kp,T2]=tztq(DATA,TESTDATA);

function [contribution,T2,SPE,t2cl,s_cl] = PCA_model(Xtrain,Xtest)

X_mean = mean(Xtrain);

X_std = std(Xtrain);

[X_row ,X_col]= size(Xtrain);

for i = 1:X_col

Xtrain(:,i) = (Xtrain(:,i)-X_mean(i))./X_std(i);

Xtest(:,i) = (Xtest(:,i)-X_mean(i))./X_std(i);

end

[U,S,V]=svd(Xtrain./sqrt(size(Xtrain,1)-1),0);

D= S^2;

lamda=diag(D);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值