tensorflow 中的 tfrecords

Tensorflow  两种方式进行数据输入:
1. feed_dict , placeholder feed 
2. 读取文件中的数据, 采用 tensorflow 自带的数据输入流
tf.train.string_input_producer() 创建为队列, 例如将 tfrecords_file 创建队列, num_epoches 代表这个filename列表的数据重复多少个epoch, 如果不设置,默认为循环队列。
filename_queue = tf.train.string_input_producer(

    tfrecords_filename, num_epoches=100)

tf.python.io.TFRecordOptions() 用来设置 tfrecord 是采用什么压缩方式,便于reader 读取,

返回的是 A tuple of Tensors (key, value). key: A string scalar Tensor. value: A string scalar Tensor

  options = tf.python_io.TFRecordOptions(TFRecordCompressionType.ZLIB)
  reader = tf.TFRecordReader(options=options)
 _, serialized_example = reader.read(filename_queue)

features = tf.parse_single_example( serialized_example, 
features={'image/img_id': tf.FixedLenFeature([], tf.int64),
      'image/encoded': tf.FixedLenFeature([], tf.string),
      'image/height': tf.FixedLenFeature([], tf.int64),
      'image/width': tf.FixedLenFeature([], tf.int64),
      'label/num_instances': tf.FixedLenFeature([], tf.int64),
      'label/gt_masks': tf.FixedLenFeature([], tf.string),
      'label/gt_boxes': tf.FixedLenFeature([], tf.string),
      'label/encoded': tf.FixedLenFeature([], tf.string),
      })

  • 其中 features: A dict mapping feature keys to FixedLenFeature or VarLenFeature values.
  • 是对 tfrecords 里面数据的解析,映射为一个 dict

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值