Tensorflow中的placeholder和feed_dict的使用

本文介绍了TensorFlow中的占位符Placeholder,用于在运行时动态输入数据。占位符没有初始值,通过feed_dict在会话中馈送数据,解决了大量迭代导致庞大计算图的问题。示例展示了如何创建和使用不同类型的占位符以及在会话中运行它们。
摘要由CSDN通过智能技术生成

TensorFlow 支持占位符placeholder。占位符并没有初始值,它只会分配必要的内存。在会话中,占位符可以使用 feed_dict 馈送数据。feed_dict是一个字典,在字典中需要给出每一个用到的占位符的取值。在训练神经网络时需要每次提供一个批量的训练样本,如果每次迭代选取的数据要通过常量表示,那么TensorFlow 的计算图会非常大。因为每增加一个常量,TensorFlow 都会在计算图中增加一个结点。所以说拥有几百万次迭代的神经网络会拥有极其庞大的计算图,而占位符却可以解决这一点,它只会拥有占位符这一个结点。

placeholder函数的定义为

tf.placeholder(dtype, shape=None, name=None)

参数:

  • dtype:数据类型。常用的是tf.int32,tf.float32,tf.float64,tf.string等数据类型。
  • shape:数据形状。默认是None,也就是一维值。也可以表示多维,比如要表示2行3列则应设为[2, 3]。形如[None, 3]表示列是3,行不定。
  • name:名称。

返回:Tensor类型

例1

import tensorflow as tf


x = tf.placeholder(tf.string)


with tf.Session() as sess:

  output = sess.run(x, feed_dict={x: 'Hello World'})

  print(output)


Output:
------------
Hello World
------------

例2

import tensorflow as tf


x = tf.placeholder(tf.string)

y = tf.placeholder(tf.int32)

z = tf.placeholder(tf.float32)


with tf.Session() as sess:

  output = sess.run(x, feed_dict = {x :'Hello World', y:123, z:45.67})

  print(output)

  output = sess.run(y, feed_dict = {x :'Hello World', y:123, z:45.67})

  print(output)

  output = sess.run(z, feed_dict = {x :'Hello World', y:123, z:45.67})

  print(output)



Output:
------------------
Hello Word
123
45.66999816894531
------------------

例3

import tensorflow as tf

import numpy as np


x = tf.placeholder(tf.float32, shape=(3, 3))

y = tf.matmul(x, x)

  

with tf.Session() as sess: 

  rand_array = np.random.rand(3, 3)

print(sess.run(y, feed_dict = {x: rand_array}))


Output:
--------------------------------------
[[0.62475741  0.40487182  0.5968855 ]
 [0.17491265  0.08546661  0.23616122]
 [0.53931886  0.24997233  0.56168258]]
--------------------------------------

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wanderer001

ROIAlign原理

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值