参考 numpy.ndarray() - 云+社区 - 腾讯云
class numpy.
ndarray
(shape, dtype=float, buffer=None, offset=0, strides=None, order=None)[source]
An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory, whether it is an integer, a floating point number, or something else, etc.)
Arrays should be constructed using array, zeros or empty (refer to the See Also section below). The parameters given here refer to a low-level method (ndarray(…)) for instantiating an array.
For more information, refer to the numpy module and examine the methods and attributes of an array.
Parameters: | (for the __new__ method; see Notes below) shape : tuple of ints Shape of created array. dtype : data-type, optional Any object that can be interpreted as a numpy data type. buffer : object exposing buffer interface, optional Used to fill the array with data. offset : int, optional Offset of array data in buffer. strides : tuple of ints, optional Strides of data in memory. order : {‘C’, ‘F’}, optional Row-major (C-style) or column-major (Fortran-style) order. |
---|
See also
Construct an array.
Create an array, each element of which is zero.
Create an array, but leave its allocated memory unchanged (i.e., it contains “garbage”).
Create a data-type.
Notes
There are two modes of creating an array using __new__
:
- If buffer is None, then only shape, dtype, and order are used.
- If buffer is an object exposing the buffer interface, then all keywords are interpreted.
No __init__
method is needed because the array is fully initialized after the __new__
method.
Examples
These examples illustrate the low-level ndarray constructor. Refer to the See Also section above for easier ways of constructing an ndarray.
First mode, buffer is None:
>>> np.ndarray(shape=(2,2), dtype=float, order='F')
array([[0.0e+000, 0.0e+000], # random
[ nan, 2.5e-323]])
Second mode:
>>> np.ndarray((2,), buffer=np.array([1,2,3]),
... offset=np.int_().itemsize,
... dtype=int) # offset = 1*itemsize, i.e. skip first element
array([2, 3])
Attributes: | T : ndarray The transposed array. data : buffer Python buffer object pointing to the start of the array’s data. dtype : dtype object Data-type of the array’s elements. flags : dict Information about the memory layout of the array. flat : numpy.flatiter object A 1-D iterator over the array. imag : ndarray The imaginary part of the array. real : ndarray The real part of the array. size : int Number of elements in the array. itemsize : int Length of one array element in bytes. nbytes : int Total bytes consumed by the elements of the array. ndim : int Number of array dimensions. shape : tuple of ints Tuple of array dimensions. strides : tuple of ints Tuple of bytes to step in each dimension when traversing an array. ctypes : ctypes object An object to simplify the interaction of the array with the ctypes module. base : ndarray Base object if memory is from some other object. |
---|
Methods
all([axis, out, keepdims]) | Returns True if all elements evaluate to True. |
any([axis, out, keepdims]) | Returns True if any of the elements of a evaluate to True. |
argmax([axis, out]) | Return indices of the maximum values along the given axis. |
argmin([axis, out]) | Return indices of the minimum values along the given axis of a. |
argpartition(kth[, axis, kind, order]) | Returns the indices that would partition this array. |
argsort([axis, kind, order]) | Returns the indices that would sort this array. |
astype(dtype[, order, casting, subok, copy]) | Copy of the array, cast to a specified type. |
byteswap([inplace]) | Swap the bytes of the array elements |
choose(choices[, out, mode]) | Use an index array to construct a new array from a set of choices. |
clip([min, max, out]) | Return an array whose values are limited to [min, max] . |
compress(condition[, axis, out]) | Return selected slices of this array along given axis. |
conj() | Complex-conjugate all elements. |
conjugate() | Return the complex conjugate, element-wise. |
copy([order]) | Return a copy of the array. |
cumprod([axis, dtype, out]) | Return the cumulative product of the elements along the given axis. |
cumsum([axis, dtype, out]) | Return the cumulative sum of the elements along the given axis. |
diagonal([offset, axis1, axis2]) | Return specified diagonals. |
dot(b[, out]) | Dot product of two arrays. |
dump(file) | Dump a pickle of the array to the specified file. |
dumps() | Returns the pickle of the array as a string. |
fill(value) | Fill the array with a scalar value. |
flatten([order]) | Return a copy of the array collapsed into one dimension. |
getfield(dtype[, offset]) | Returns a field of the given array as a certain type. |
item(*args) | Copy an element of an array to a standard Python scalar and return it. |
itemset(*args) | Insert scalar into an array (scalar is cast to array’s dtype, if possible) |
max([axis, out, keepdims, initial, where]) | Return the maximum along a given axis. |
mean([axis, dtype, out, keepdims]) | Returns the average of the array elements along given axis. |
min([axis, out, keepdims, initial, where]) | Return the minimum along a given axis. |
newbyteorder([new_order]) | Return the array with the same data viewed with a different byte order. |
nonzero() | Return the indices of the elements that are non-zero. |
partition(kth[, axis, kind, order]) | Rearranges the elements in the array in such a way that the value of the element in kth position is in the position it would be in a sorted array. |
prod([axis, dtype, out, keepdims, initial, …]) | Return the product of the array elements over the given axis |
ptp([axis, out, keepdims]) | Peak to peak (maximum - minimum) value along a given axis. |
put(indices, values[, mode]) | Set a.flat[n] = values[n] for all n in indices. |
ravel([order]) | Return a flattened array. |
repeat(repeats[, axis]) | Repeat elements of an array. |
reshape(shape[, order]) | Returns an array containing the same data with a new shape. |
resize(new_shape[, refcheck]) | Change shape and size of array in-place. |
round([decimals, out]) | Return a with each element rounded to the given number of decimals. |
searchsorted(v[, side, sorter]) | Find indices where elements of v should be inserted in a to maintain order. |
setfield(val, dtype[, offset]) | Put a value into a specified place in a field defined by a data-type. |
setflags([write, align, uic]) | Set array flags WRITEABLE, ALIGNED, (WRITEBACKIFCOPY and UPDATEIFCOPY), respectively. |
sort([axis, kind, order]) | Sort an array in-place. |
squeeze([axis]) | Remove single-dimensional entries from the shape of a. |
std([axis, dtype, out, ddof, keepdims]) | Returns the standard deviation of the array elements along given axis. |
sum([axis, dtype, out, keepdims, initial, where]) | Return the sum of the array elements over the given axis. |
swapaxes(axis1, axis2) | Return a view of the array with axis1 and axis2 interchanged. |
take(indices[, axis, out, mode]) | Return an array formed from the elements of a at the given indices. |
tobytes([order]) | Construct Python bytes containing the raw data bytes in the array. |
tofile(fid[, sep, format]) | Write array to a file as text or binary (default). |
tolist() | Return the array as an a.ndim -levels deep nested list of Python scalars. |
tostring([order]) | Construct Python bytes containing the raw data bytes in the array. |
trace([offset, axis1, axis2, dtype, out]) | Return the sum along diagonals of the array. |
transpose(*axes) | Returns a view of the array with axes transposed. |
var([axis, dtype, out, ddof, keepdims]) | Returns the variance of the array elements, along given axis. |
view([dtype, type]) | New view of array with the same data. |
NumPy 最重要的一个特点是其 N 维数组对象 ndarray,它是一系列同类型数据的集合,以 0 下标为开始进行集合中元素的索引。
ndarray 对象是用于存放同类型元素的多维数组。ndarray 中的每个元素在内存中都有相同存储大小的区域。
ndarray 内部由以下内容组成:
-
一个指向数据(内存或内存映射文件中的一块数据)的指针。
-
数据类型或dtype,描述在数组中的固定大小值的格子。
-
一个表示数组形状(shape)的元组,表示各维度大小的元组。
-
一个跨度元组(stride),其中的整数指的是为了前进到当前维度下一个元素需要"跨过"的字节数。
ndarray 的内部结构:
跨度可以是负数,这样会使数组在内存中后向移动,切片中 obj[::-1] 或 obj[:,::-1] 就是如此。
创建一个 ndarray 只需调用 NumPy 的 array 函数即可:
numpy.array(object, dtype = None, copy = True, order = None, subok = False, ndmin = 0)
参数说明:
名称 | 描述 |
---|---|
object | 数组或嵌套的数列 |
dtype | 数组元素的数据类型,可选 |
copy | 对象是否需要复制,可选 |
order | 创建数组的样式,C为行方向,F为列方向,A为任意方向(默认) |
subok | 默认返回一个与基类类型一致的数组 |
ndmin | 指定生成数组的最小维度 |
实例
接下来可以通过以下实例帮助我们更好的理解。
实例 1
import numpy as np
a = np.array([1,2,3])
print (a)
Output:
----------
[1, 2, 3]
----------
实例 2
# 多于一个维度
import numpy as np
a = np.array([[1, 2], [3, 4]])
print (a)
Output:
----------
[[1, 2]
[3, 4]]
----------
实例 3
# 最小维度
import numpy as np
a = np.array([1, 2, 3,4,5], ndmin = 2)
print (a)
Output:
-------------------
[[1, 2, 3, 4, 5]]
-------------------
实例 4
# dtype 参数
import numpy as np
a = np.array([1, 2, 3], dtype = complex)
print (a)
Output:
----------------------------
[ 1.+0.j, 2.+0.j, 3.+0.j]
----------------------------
ndarray对象由计算机内存的连续一维部分组成,并结合索引模式,将每个元素映射到内存块中的一个位置。内存块以行顺序(C样式)或列顺序(FORTRAN或MatLab风格,即前述的F样式)来保存元素。