SVHN数据集

这篇博客介绍了SVHN数据集,源自谷歌街景门牌号码,主要应用于OCR研究。文章详细阐述了数据集的格式,数据处理包括将图像转换为适合训练的格式并进行归一化,以及标签的转换。最后,使用TensorFlow的ImagePreprocessing和cifar10网络结构进行训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考 SVHN数据集 - 云+社区 - 腾讯云

目录

1、数据集简介

2、数据处理

3、TFearn 训练


1、数据集简介

SVHN(Street View House Number)Dateset 来源于谷歌街景门牌号码,原生的数据集1也就是官网的 Format 1 是一些原始的未经处理的彩色图片,如下图所示(不含有蓝色的边框),下载的数据集含有 PNG 的图像和 digitStruct.mat  的文件,其中包含了边框的位置信息,这个数据集每张图片上有好几个数字,适用于 OCR 相关方向。这里采用 Format2, Format2 将这些数字裁剪成32x32的大小,如图所示,并且数据是 .mat 文件。

    

2、数据处理

数据集含有两个变量 X 代表图像, 训练集 X 的 shape 是  (32,32,3,73257) 也就是(width, height, channels, samples),  tensorflow 的张量需要 (samples, width, height, channels),所以需要转换一下,由于直接调用 cifar 10 的网络模型,数据只需要先做个归一化,所有像素除于255就 OK,另外原始数据 0 的标签是 10,这里要转化成 0,并提供 one_hot 编码。

#!/usr/bin/env python2
# -*- coding:
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wanderer001

ROIAlign原理

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值