Pow(x, n)

实现 pow(x, n) ,即计算 x 的整数 n 次幂函数(即,xn )。

示例 1:

输入:x = 2.00000, n = 10
输出:1024.00000

示例 2:

输入:x = 2.10000, n = 3
输出:9.26100

示例 3:

输入:x = 2.00000, n = -2
输出:0.25000
解释:2-2 = 1/22 = 1/4 = 0.25

方法

「快速幂算法」的本质是分治算法。举个例子,如果我们要计算x^{64},我们可以按照:

x \to x^2 \to x^4 \to x^8 \to x^{16} \to x^{32} \to x^{64}的顺序,从x开始,每次直接把上一次的结果进行平方,计算6次就可以得到x^{64}的值,而不需要对x63x

再举一个例子,如果我们要计算x^{77},我们可以按照:

x \to x^2 \to x^4 \to x^9 \to x^{19} \to x^{38} \to x^{77}的顺序,在x \to x^2x^2 \to x^4x^{19} \to x^{38}这些步骤中,我们直接把上一次的结果进行平方,而在x^4 \to x^9x^9 \to x^{19}x^{38} \to x^{77}这些步骤中,我们把上一次的结果进行平方后,还要额外乘一个x

直接从左到右进行推导看上去很困难,因为在每一步中,我们不知道在将上一次的结果平方之后,还需不需要额外乘x。但如果我们从右往左看,分治的思想就十分明显了:

当我们要计算x^n时,我们可以先递归地计算出y = x^{\lfloor n/2 \rfloor},其中\lfloor a \rfloor表示对a进行下取整;

根据递归计算的结果,如果n为偶数,那么x^n = y^2;如果n为奇数,那么x^n = y^2 \times x

递归的边界为n = 0,任意数的0次方均为1

由于每次递归都会使得指数减少一半,因此递归的层数为O(\log n),算法可以在很快的时间内得到结果。

代码

class Solution {
public:
    double quickMul(double x, long long N) {
        if (N == 0) {
            return 1.0;
        }
        double y = quickMul(x, N / 2);
        return N % 2 == 0 ? y * y : y * y * x;
    }

    double myPow(double x, int n) {
        long long N = n;
        return N >= 0 ? quickMul(x, N) : 1.0 / quickMul(x, -N);
    }
};

复杂度分析

时间复杂度:O(\log n),即为递归的层数。

空间复杂度:O(\log n),即为递归的层数。这是由于递归的函数调用会使用栈空间。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wanderer001

ROIAlign原理

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值