【趣学算法】一棋盘的麦子

14天阅读挑战赛
努力是为了不平庸~
算法学习有些时候是枯燥的,这一次,让我们先人一步,趣学算法!

案例背景

有一个古老的传说,一位国王的女儿不幸落水,水中有很多鳄鱼,国王情急之下下令:“谁能把公主救上来,就把女儿嫁给他。”很多人纷纷退让,一个勇敢的小伙子挺身而出,冒着生命危险把公主救了上来,国王一看是个穷小子,想要反悔,说:“除了女儿,你要什么都可以。”小伙子说:“好吧,我只要一棋盘的麦子。您在第1个格子里放1粒麦子,在第2个格子里放2粒,在第3个格子里放4粒,在第4个格子里放8粒,以此类推,每一个格子里麦子的粒数都是前一格子里麦子粒数的两倍。把这64个格子放满了就行,我就要这么多。”国王听后哈哈大笑,觉得小伙子的要求很容易满足,满口答应。结果发现,把全国的麦子都拿来,也填不完这64个格子……国王无奈,只好把女儿嫁给了这个小伙子。 

分析

上面这个古老的传说,大概意思,应该每个人都能读懂它所讲的内容吧。

一个棋盘,64 个格子,从第一格,开始,第一格放 1 粒麦子,以此类推,之后每一个放的麦子数是前面格子里麦子数目的 2 倍。

咱们先来探讨这个案例背景中的 64 个格子全部放完需要多少粒麦子呢?

从这个简单案例中,我们可以找到一个规律,每个格子里放的麦子数目为 2^{i-1}i 代表第几个格子。

所以把每一个格子里需要放的麦子粒数加起来,总和为 S,则:

S = 2^{0}+2^{1}+2^{2}+2^{3}……+2^{63} ①

对公式 ① 等号的两边乘以 2 ,等式仍然成立:

2S = 2^{1}+2^{2}+2^{3}……+2^{63}+2^{64} ②

用公式  ② 减去公式 ① ,得:

S = 2^{64}-2^{0}= 18 446 744 073 709 551 615。

上面是计算出的一共多少粒麦子,接下来我们换算一下,可以有个更直观的数据量的概念。

据专家统计,每颗麦粒的平均重量约 41.9 毫克,这些麦粒的总重量为:

18 446 744 073 709 551 615 \times 41.9=772 918 576 688 430 212 668.5(毫克)≈7729 000(亿千克)

全世界人口按 77 亿计算,每人差不多可以分得100 000千克(即100吨)!

我们称这样的函数为爆炸增量函数。想一想,如果算法的时间复杂度是O(2^{n})会怎样?随着 n 的增长,算法会不会“爆掉”?我们经常见到有些算法调试没问题,运行一段时间也没问题,但在关键的时候宕机(shutdown)。例如在线考试系统,50人考试没问题,100人考试也没问题,但如果全校10 000人考试就可能宕机。

注意:宕机就是死机,指计算机无法正常工作,包括一切原因导致的死机。计算机主机出现意外故障而死机,一些服务器(如数据库服务器)死锁,服务器的某些服务停止运行等,都可以称为宕机。

总结

常见的算法时间复杂度有以下几类。

(1)常数阶。

常数阶算法的运行次数是一个常数,如5、20、100。常数阶算法的时间复杂度通常用 O(1)表示。

(2)多项式阶。

很多算法的时间复杂度是多项式,通常用 O(n)O(n^2)O(n^3)等表示。

(3)指数阶。

指数阶算法的运行效率极差,程序员往往像躲“恶魔”一样避开这种算法。指数阶算法的时间复杂度通常用O(2^n)O(n!)O(n^n) 等表示。

(4)对数阶。

对数阶算法的运行效率较高,通常用 O(logn)O(nlogn)等表示。

指数阶增量随着变量 X 的增加而急剧增加,而对数阶增长缓慢。它们之间的关系如下:

O(1)O(logn)O(n)<O(nlogn)<O(n^2)<O(n^3)<O(2^n)<O(n!)<O(n^n) 

在设计算法时,我们要注意算法复杂度增量的问题,尽量避免爆炸级增量。

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

跟着飞哥学编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值