门控网络简介

门控网络,如LSTM和GRU,通过门机制解决RNN的梯度消失问题,特别在NLP、CV和音频处理中广泛应用,如机器翻译、图像分类和语音识别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

门控网络是一种循环神经网络 (RNN),它使用门来控制信息在时间步之间的流动。门是一种神经网络层,它可以选择性地允许或阻止信息通过。

门控网络的主要优点是它们可以解决传统 RNN 中存在的梯度消失问题。梯度消失是指随着时间步的增加,梯度会变得越来越小,最终变为零。这会导致 RNN 难以学习长期依赖关系。

门控网络有两种主要类型:

  • 长短期记忆 (LSTM):LSTM 使用三个门:遗忘门、输入门和输出门。遗忘门决定从上一个时间步传递多少信息,输入门决定将多少新信息添加到隐藏状态,输出门决定将多少隐藏状态输出到下一个时间步。
    LSTM 门控网络

  • 门控循环单元 (GRU):GRU 使用两个门:重置门和更新门。重置门决定从上一个时间步重置多少信息,更新门决定将多少新信息添加到隐藏状态。GRU 的结构比 LSTM 简单,但在许多任务上性能相当。
    GRU 门控网络

门控网络在许多任务中都取得了成功&#

### 双门控前馈神经网络介绍 双门控前馈神经网络是一种改进型的前馈神经网络结构,旨在通过引入两个控制门机制来增强传统前馈网络的能力。这种架构允许更有效的特征提取和模式识别能力。 #### 结构特点 在网络层面上,双门控前馈神经网络由多个层次组成,每一层都包含了两种类型的门单元:输入门和遗忘门。这些门的作用在于调节信息流: - **输入门**负责决定哪些新信息应该被纳入当前节点的状态更新过程中; - **遗忘门**则决定了之前存储的信息有多少应当保留下来继续影响后续计算过程[^1]。 #### 工作原理 当数据进入该类网络时,首先会经过一系列线性和非线性的变换操作,随后到达各个隐藏层中的门控单元。对于每一个时间步或者样本点而言,这两个门分别计算其对应的激活值,并据此调整权重参数以优化最终输出结果的质量。 具体来说,在每次迭代期间,给定一个输入向量 \( \mathbf{x} \),以及上一时序的记忆状态 \( c_{t-1} \) 和隐含状态 \( h_{t-1} \): 1. 计算候选记忆细胞状态 \( \tilde{c}_t = f(\mathbf{W}_{xc}\mathbf{x}_t +\mathbf{W}_{hc}h_{t−1}) \); 2. 使用sigmoid函数作为激活函数得到输入门 \( i_t=\sigma (\mathbf{W}_{xi}\mathbf{x}_t+\mathbf{W}_{hi}h_{t−1}) \) 的输出; 3. 同样地, 遗忘门 \( f_t=σ(Wxfxt+Wfhft−1+b_f)\), 控制旧记忆的比例; 4. 更新后的记忆细胞状态为 \( c_t=f_ti_tc_{t−1}+i_t\tilde{c}_t \); 5. 输出门 \( o_t=\sigma (Wxoxt+Wohot−1) \) 决定了新的隐含状态 \( h_t=o_th(c_t) \). ```python import torch.nn as nn class DoubleGatedFeedForwardNet(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(DoubleGatedFeedForwardNet, self).__init__() # Define the gates and other layers here def forward(self, x): # Implement the gating mechanism according to above principles pass ``` #### 应用领域 由于具备良好的序列建模能力和较强的表达力,这类模型广泛应用于自然语言处理、语音识别等领域内的任务中。特别是在涉及长时间依赖关系的数据集上的表现尤为突出,比如文本分类、情感分析等场景下能够取得较好的效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值