【开源数学数据集】OpenMathInstruct-1: A 1.8 Million Math Instruction Tuning Dataset

论文介绍了一种方法,通过创建OpenMathInstruct-1数据集,以提升开源大型语言模型在数学推理任务中的性能。该数据集包含1.8M个问题-解决方案对,旨在缩小与闭源模型如GPT-4之间的差距。研究探索了提示策略和数据选择以提高生成质量和效率,展示了开源LLMs在数学推理领域的潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Q: 这篇论文试图解决什么问题?

A: 这篇论文试图解决的问题是如何构建一个大规模的数学教学调整数据集,以提高开源大型语言模型(LLMs)在数学推理任务上的性能。具体来说,论文的目标是:

填补开源LLMs与闭源LLMs(如GPT-4)在数学技能上的差距:通过使用开源的Mixtral模型,论文旨在生成高质量的数学问题-解决方案对,以训练出在数学推理任务上表现出色的LLMs。

创建一个商业许可的大规模数据集:现有的大规模数学教学调整数据集(如MetaMathQA和MAmmoTH)通常基于闭源LLMs生成,这限制了它们的使用。论文提出了OpenMathInstruct-1数据集,它包含了1.8M个问题-解决方案对,并且拥有商业许可,允许未来的研究自由使用。

提高数据生成的效率和质量:通过探索不同的提示策略(如使用遮蔽文本解决方案)和数据选择策略(如公平下采样和代码优先选择),论文旨在提高生成解决方案的覆盖率和质量,从而提高最终微调模型的性能。

展示开源LLMs在数学推理任务上的潜力:通过在OpenMathInstruct-1数据集上训练的模型(如OpenMath-CodeLlama-70B),论文展示了开源LLMs在数学推理任务上可以达到与GPT-4蒸馏模型相竞争的性能。

总的来说

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值