CFR算法在Leduc德州扑克中的应用

在人工智能和博弈论领域,如何在不完全信息博弈中找到最优策略一直是一个重要的研究课题。近年来,反事实遗憾最小化(Counterfactual Regret Minimization, CFR)算法在解决这类问题上取得了巨大成功。本文将详细介绍CFR算法的原理,并以Leduc德州扑克为例,展示如何使用CFR算法训练出高水平的AI玩家。

Leduc德州扑克简介

在深入CFR算法之前,我们先来了解一下Leduc德州扑克这个游戏。Leduc德州扑克是一种简化版的德州扑克,由两名玩家参与,使用一副只有6张牌的扑克牌(两种花色,每种花色有K、Q、J三张牌)。游戏规则如下:

  1. 每位玩家先下注1筹码作为前注(ante)。
  2. 每位玩家发一张暗牌。
  3. 第一轮下注。
  4. 发一张公共牌。
  5. 第二轮下注。
  6. 摊牌比大小。

比牌规则:

  • 如果有玩家的暗牌与公共牌相同,则该玩家获胜。
  • 如果都不相同,则比较暗牌大小,K>Q>J。

Leduc德州扑克虽然规则简单,但仍然包含了不完全信息博弈的核心特征,因此成为了研究CFR算法的理想测试平台。

CFR算法原理

反事实遗憾最小化(CFR)算法是一种迭代式的自我博弈学习方法,其核心思想是通过最小化每个决策点的"反事实遗憾"来逐步改进策略。

关键概念

  1. 信息集(Information Set): 在某一时刻,玩家所知道的所有信息的集合。在Leduc德州扑克中,一个信息集包括玩家的暗牌、可见的公共牌(如果有)以及之前的所有行动序列。

  2. 策略(Strategy): 在每个信息集上的行动概率分布。

  3. 反事实值(Counterfactual Value): 假设玩家总是到达某个信息集,并从该点开始按照当前策略行动,所能获得的期望收益。

  4. 反事实遗憾(Counterfactual Regret): 某个行动的反事实值与当前策略下该信息集反事实值的差。

算法流程

CFR算法的基本流程如下:

  1. 初始化所有信息集的策略为均匀分布。
  2. 重复以下步骤T次:
    a. 为每个玩家计算反事实值和反事实遗憾。
    b. 更新每个信息集的累积遗憾。
    c. 根据累积遗憾更新策略。
  3. 输出平均策略作为最终结果。

具体来说,CFR算法使用如下公式更新策略:

R i T ( I , a ) = R i T − 1 ( I , a ) + v i ( I → a ) − v i ( I ) R_i^T(I,a) = R_i^{T-1}(I,a) + v_i(I \rightarrow a) - v_i(I) RiT(I,a)=RiT1(I,a)+vi(Ia)vi(I)

σ i T ( I , a ) = R i T ( I , a ) + ∑ a ′ R i T ( I , a ′ ) + \sigma_i^T(I,a) = \frac{R_i^T(I,a)^+}{\sum_{a'} R_i^T(I,a')^+} σiT(I,a)=aRiT(I,a)+RiT(I,a)+

其中, R i T ( I , a ) R_i^T(I,a) RiT(I,a)是玩家i在信息集I选择行动a的累积遗憾, v i ( I → a ) v_i(I \rightarrow a) vi(Ia)是选择行动a的反事实值, v i ( I ) v_i(I) vi(I)是当前策略下的反事实值, σ i T ( I , a ) \sigma_i^T(I,a) σiT(I,a)是更新后的策略, R i T ( I , a ) + R_i^T(I,a)^+ RiT(I,a)+表示取正值(如果为负则取0)。

在Leduc德州扑克中应用CFR

现在,我们来看如何使用RLCard框架在Leduc德州扑克上实现CFR算法。

环境设置

首先,我们需要设置游戏环境:

import rlcard
from rlcard.agents import CFRAgent, RandomAgent
from rlcard.utils import tournament, Logger, plot_curve

# 创建允许回溯的环境
env = rlcard.make('leduc-holdem', config={'allow_step_back': True})

# 创建用于评估的环境
eval_env = rlcard.make('leduc-holdem')

这里我们创建了两个环境:一个允许回溯的环境用于CFR训练,另一个用于评估。

创建CFR代理

接下来,我们创建CFR代理:

agent = CFRAgent(env, "experiments/leduc_holdem_cfr_result/cfr_model")

这里我们指定了模型保存的路径。

训练过程

CFR的训练过程如下:

with Logger("experiments/leduc_holdem_cfr_result") as logger:
    for episode in range(1000):
        agent.train()
        print('\rIteration {}'.format(episode), end='')
        
        # 每50轮评估一次
        if episode % 50 == 0:
            logger.log_performance(
                env.timestep,
                tournament(eval_env, 10000)[0]
            )

在这个训练循环中,我们进行了1000轮迭代。每一轮,CFR代理都会更新其策略。每50轮,我们会评估当前策略的性能,方法是让其与随机代理进行10000局对弈。

结果分析

训练完成后,我们可以绘制学习曲线:

plot_curve(csv_path, fig_path, 'cfr')

从学习曲线可以看出,CFR算法在Leduc德州扑克上表现出色。随着训练轮数的增加,CFR代理的性能稳步提升,最终达到了远超随机策略的水平。

结论

本文介绍了CFR算法的基本原理,并展示了如何在Leduc德州扑克这个简化的扑克游戏中应用CFR算法。通过实验可以看出,CFR算法能够有效地学习到接近最优的策略。

CFR算法的成功不仅限于Leduc德州扑克。事实上,它在更复杂的不完全信息博弈中也取得了巨大成功,如在完整版德州扑克中击败顶级人类职业选手。这证明了CFR算法在解决大规模不完全信息博弈问题上的强大能力。

然而,CFR算法也存在一些局限性,如在状态空间极大的游戏中,可能需要大量的计算资源和时间。因此,未来的研究方向包括如何进一步提高CFR的效率,以及如何将CFR与深度学习等其他技术结合,以应对更加复杂的问题。

参考文献

  1. Brown, N., & Sandholm, T. (2019). Superhuman AI for multiplayer poker. Science, 365(6456), 885-890.

  2. Zinkevich, M., Johanson, M., Bowling, M., & Piccione, C. (2008). Regret minimization in games with incomplete information. Advances in neural information processing systems, 20.

  3. Bowling, M., Burch, N., Johanson, M., & Tammelin, O. (2015). Heads-up limit hold’em poker is solved. Science, 347(6218), 145-149.

  4. RLCard: A Toolkit for Reinforcement Learning in Card Games. https://github.com/datamllab/rlcard

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值