ResNet-18 深度解析与应用指南

ResNet-18 是深度残差网络家族中最轻量级的成员,在计算效率和性能之间实现了完美平衡。作为计算机视觉领域的基石模型,它在边缘计算和实时系统中具有不可替代的价值。

一、ResNet-18 架构详解

1. 整体架构设计

图片代码

输入 224×224×3

Conv1 7×7,64,s=2

MaxPool 3×3,s=2

Conv2_x 2×BasicBlock,64

Conv3_x 2×BasicBlock,128,s=2

Conv4_x 2×BasicBlock,256,s=2

Conv5_x 2×BasicBlock,512,s=2

全局平均池化

全连接层 1000类

2. BasicBlock 实现细节

 

python

复制

class BasicBlock(nn.Module):
    expansion = 1
    
    def __init__(self, in_channels, out_channels, stride=1):
        super(
### ResNet18 深度学习模型架构实现 #### 架构概述 ResNet18 是一种基于残差网络 (Residual Network) 的卷积神经网络,具有18深度。该模型通过引入跳跃连接解决了深层网络中的梯度消失问题,使得训练更加稳定有效[^2]。 #### 主要组件 - **输入层**: 接收图像数据作为输入。 - **卷积层**: 使用多个3×3的小型滤波器来提取特征图谱。 - **批标准化(Batch Normalization)**: 加速收敛并减少内部协变量偏移。 - **激活函数(ReLU)**: 增加非线性表达能力。 - **池化操作(Max Pooling & Average Pooling)**: 下采样以降低维度。 - **全连接层(Fully Connected Layer)**: 将最后一个卷积层输出映射到分类标签空间。 - **Softmax 层**: 输出概率分布用于多类别分类任务。 #### 特殊设计 - 跳跃连接(Skip Connection) ResNet的核心创新在于其独特的跳过链接机制,允许信息绕过多层传递而不必经过每一步计算。这种结构有助于缓解非常深的网络中存在的退化问题,并促进更深层次的学习效率提升。 #### PyTorch 实现示例 以下是使用PyTorch框架构建ResNet18的一个简单例子: ```python import torch.nn as nn import torchvision.models as models class ResNet18(nn.Module): def __init__(self, num_classes=1000): super().__init__() self.model = models.resnet18(pretrained=True) # 修改最后一层适应新的分类数量 self.model.fc = nn.Linear(self.model.fc.in_features, num_classes) def forward(self, x): return self.model(x) if __name__ == "__main__": net = ResNet18(num_classes=10).cuda() print(net) ``` 此代码片段展示了如何利用预训练权重初始化一个针对特定任务调整过的ResNet18实例。`num_classes` 参数指定了最终分类的数量;对于不同的应用场景可以相应修改这个值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浩瀚之水_csdn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值