ResNet-18 是深度残差网络家族中最轻量级的成员,在计算效率和性能之间实现了完美平衡。作为计算机视觉领域的基石模型,它在边缘计算和实时系统中具有不可替代的价值。
一、ResNet-18 架构详解
1. 整体架构设计
图片代码
输入 224×224×3
Conv1 7×7,64,s=2
MaxPool 3×3,s=2
Conv2_x 2×BasicBlock,64
Conv3_x 2×BasicBlock,128,s=2
Conv4_x 2×BasicBlock,256,s=2
Conv5_x 2×BasicBlock,512,s=2
全局平均池化
全连接层 1000类
2. BasicBlock 实现细节
python
复制
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_channels, out_channels, stride=1):
super(