在人工智能的迅速发展浪潮中,大型语言模型(LLMs)在自然语言处理领域扮演着至关重要的角色,从文本生成到问答系统,它们无处不在。然而,随着它们影响力的扩大,确保其在评判与决策过程中保持公正性成为了一个亟待解决的关键问题。本文旨在介绍一种创新的评估框架——CALM(Comprehensive Assessment of Language Model Judge Biases),旨在系统地评估和量化LLMs在评判过程中的潜在偏见。
CALM框架的核心与结构
CALM框架由四大支柱构成,旨在从多维度深入分析模型的偏见:
12类偏见识别
CALM框架识别并细分为12种偏见类型,覆盖了模型在评判过程中可能遇到的各种挑战,如:
- 位置偏见:模型对特定答案位置的偏好,可能导致评判的不公。
- 冗长偏见:模型倾向过长的表述,即便这些表述可能不够精炼或准确。
- 权威偏见:对引用权威来源的回答给予过多重视。
- 情感偏见:模型对情感表达的倾向性可能影响其评判标准。