在机器人技术迅速发展的今天,将仿真中学习到的策略有效转移到现实世界成为了一个至关重要的研究方向。传统的仿真到现实(sim-to-real)方法通常依赖于手动设计和调节任务奖励函数以及仿真物理参数,这一过程既繁琐又耗时。本文提出了一种新颖的方法——DrEureka,它利用大型语言模型(LLMs)来自动化和加速仿真到现实的设计。
🌟 DrEureka的核心理念
DrEureka的核心在于简化仿真到现实的过程。我们的方法只需目标任务的物理仿真,便能自动构建合适的奖励函数和领域随机化分布,以支持真实世界的转移。换句话说,DrEureka就像是一个聪明的助手,能够在机器人学习的过程中提供及时的指导和优化。
🚀 自动化的奖励设计
我们的研究首先展示了DrEureka能够发现与现有人工设计的配置相竞争的仿真到现实配置,特别是在四足行走和灵巧操作任务中。更为惊人的是,我们的方法还能够解决一些新颖的机器人任务,比如四足平衡和在瑜伽球上行走,而无需进行繁琐的手动设计。