LIMO:少就是多高效训练推理模型

在当下,以 DeepSeek-R1 为代表的 RL Scaling 方法逐渐成为主流,其核心思路是通过大规模的强化学习训练来增强模型的推理能力。然而,LIMO(Less Is More for Reasoning)研究提出了一个全新的视角,挑战了传统的 RL Scaling 范式。
RL Scaling 方法的局限性
RL Scaling 方法依赖于海量数据和复杂的算法,试图通过大规模的训练来“训练”模型获得新的推理能力。这种方法虽然在某些任务上取得了显著成效,但也存在明显的局限性。首先,它需要大量的计算资源和数据支持,这使得研究和开发的门槛极高。其次,这种方法将推理能力的提升视为一个“搜索”过程,而忽视了模型本身已经具备的潜在能力。
LIMO 的新视角
与 RL Scaling 方法不同,LIMO 提出了一个全新的理论框架,认为大模型的推理能力本质上是“潜伏”的,而非“缺失”的。LIMO 的核心假设是:在知识基础已经足够完善的情况下,利用少量高质量的示例就能够激活模型的潜在推理能力。这一理论不仅重新定义了 RL Scaling 的位置,将其视为寻找最优推理轨迹的一种手段,更为整个领域的研究提供了新的思考框架。
LIMO 的实验验证
LIMO 的理论得到了实验结果的强力支持。仅凭 817 条数据,LIMO 就超越了主流的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值