在当下,以 DeepSeek-R1 为代表的 RL Scaling 方法逐渐成为主流,其核心思路是通过大规模的强化学习训练来增强模型的推理能力。然而,LIMO(Less Is More for Reasoning)研究提出了一个全新的视角,挑战了传统的 RL Scaling 范式。
RL Scaling 方法的局限性
RL Scaling 方法依赖于海量数据和复杂的算法,试图通过大规模的训练来“训练”模型获得新的推理能力。这种方法虽然在某些任务上取得了显著成效,但也存在明显的局限性。首先,它需要大量的计算资源和数据支持,这使得研究和开发的门槛极高。其次,这种方法将推理能力的提升视为一个“搜索”过程,而忽视了模型本身已经具备的潜在能力。
LIMO 的新视角
与 RL Scaling 方法不同,LIMO 提出了一个全新的理论框架,认为大模型的推理能力本质上是“潜伏”的,而非“缺失”的。LIMO 的核心假设是:在知识基础已经足够完善的情况下,利用少量高质量的示例就能够激活模型的潜在推理能力。这一理论不仅重新定义了 RL Scaling 的位置,将其视为寻找最优推理轨迹的一种手段,更为整个领域的研究提供了新的思考框架。
LIMO 的实验验证
LIMO 的理论得到了实验结果的强力支持。仅凭 817 条数据,LIMO 就超越了主流的
LIMO:少就是多高效训练推理模型
最新推荐文章于 2025-05-12 11:08:18 发布