详解SPSS 分析技术在大规模分析中的应用

本文详细介绍了SPSS在大规模分析中的应用,包括SPSS Modeler的数据挖掘工作台,SPSS Analytic Server的大数据集成,以及与Netezza、InfoSphere BigInsights、InfoSphere Streams的集成。通过这些集成,SPSS提供了高性能和高可伸缩性的解决方案,支持实时和批处理分析。SPSS平台的组件与大数据平台的结合,使分析师能够利用强大的分析工具处理大数据。
摘要由CSDN通过智能技术生成

SPSS 平台概述

与大数据集成的 SPSS 软件组件:

  • SPSS Modeler

  • SPSS Analytic Server

  • SPSS Collaboration and Deployment Services

  • SPSS Analytic Catalyst

SPSS Modeler 是一个数据挖掘工作台,用于分析数据和部署分析资产。通用术语分析资产 用于描述解决某个业务问题的一个操作集合。数据科学家在描述使用数据挖掘工具开发的资产时,通常会使用术语模型 或预测模型。除了模型之外,SPSS 分析资产还可包含数据准备步骤和业务规则。图 1 显示了 SPSS Modeler 中开发的一个示例分析资产。在此示例中,我们使用一个决策树模型来执行贷款违约预测。分析资产执行以下操作:

  • 合并来自 3 个历史数据源的数据

  • 使用一个 Type 节点识别用于模型预测的目标变量 (MortgageDefault)

  • 构建一个基于 C5.0 决策树算法的模型

  • 选择具有积极的贷款违约预测的记录

  • 将结果显示在一个表中


图 1. SPSS Modeler 中开发的分析资产

640?wx_fmt=png


SPSS Modeler 是一个可视编程环境。分析资产可通过连接画布上的可视编程节点来创建;在运行时,节点按照连接箭头的方向执行。节点可按照相关功能进行组织:SourcesRecord OperationsField OperationsModeling 等。Modeling 选项卡显示用于生成模型的算法(参见图 2)。SPSS 发布了 27 个建模算法和整套的节点,对一个数据集运行多种算法并选择最佳的节点。除了所描述的可视节点之外,如果分析师希望扩展 SPS

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值