机械振动信号的深度学习特征提取

本文介绍如何使用Python和TensorFlow的Keras库,通过卷积神经网络和循环神经网络对机械振动信号进行时域和频域特征提取,以实现故障检测。代码示例展示了特征提取、数据预处理、模型构建和训练过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对于机械振动信号的深度学习特征提取,可以使用卷积神经网络(Convolutional Neural Network, CNN)或循环神经网络(Recurrent Neural Network, RNN)。以下是一个示例的Python代码,演示了如何使用深度学习方法提取时域和频域特征:

import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv1D, MaxPooling1D, Flatten, Dense, LSTM

# 1. 数据准备

# 假设你有一组机械振动信号数据和对应的故障标签
data = [...]  # 机械振动信号数据
labels = [...]  # 故障标签

# 2. 特征提取和数据预处理

# 初始化特征列表
features = []

# 提取时域和频域特征
for signal in data:
    time_feats = time_domain_features(signal)
    freq_feats = frequency_domain_features(signal, sample_rate)
    feats = np.concatenate((time_feats, freq_feats), axis=0)
    features.append(feats)

# 数据预处理(标准化)
features = np.array(features)
scaler = StandardScaler()
scaled_features = scaler.fit_transform(features)

# 3. 构建深度学习模型

model = Sequential()
model.add(Conv1D(filters=32, kernel_size=3, activation='relu', input_shape=(num_features, 1)))
model.add(MaxPooling1D(pool_size=2))
model.add(Conv1D(filters=64, kernel_size=3, activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))

# 4. 模型训练和评估

# 编译模型
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

# 拆分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(scaled_features, labels, test_size=0.2, random_state=42)

# 将输入数据转换为适合深度学习模型的形状
X_train = np.expand_dims(X_train, axis=2)
X_test = np.expand_dims(X_test, axis=2)

# 训练模型
model.fit(X_train, y_train, batch_size=32, epochs=10, validation_data=(X_test, y_test))

# 评估模型
loss, accuracy = model.evaluate(X_test, y_test)
print("Accuracy:", accuracy)
在以上代码示例中,你需要根据实际情况自定义时域特征提取函数和频域特征提取函数,并根据数据集的特点调整模型的参数和架构。同时,你还可以尝试其他深度学习模型,如循环神经网络(RNN)或长短期记忆网络(LSTM),以适应不同的振动信号特征。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值