对于机械振动信号的深度学习特征提取,可以使用卷积神经网络(Convolutional Neural Network, CNN)或循环神经网络(Recurrent Neural Network, RNN)。以下是一个示例的Python代码,演示了如何使用深度学习方法提取时域和频域特征:
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv1D, MaxPooling1D, Flatten, Dense, LSTM
# 1. 数据准备
# 假设你有一组机械振动信号数据和对应的故障标签
data = [...] # 机械振动信号数据
labels = [...] # 故障标签
# 2. 特征提取和数据预处理
# 初始化特征列表
features = []
# 提取时域和频域特征
for signal in data:
time_feats = time_domain_features(signal)
freq_feats = frequency_domain_features(signal, sample_rate)
feats = np.concatenate((time_feats, freq_feats), axis=0)
features.append(feats)
# 数据预处理(标准化)
features = np.array(features)
scaler = StandardScaler()
scaled_features = scaler.fit_transform(features)
# 3. 构建深度学习模型
model = Sequential()
model.add(Conv1D(filters=32, kernel_size=3, activation='relu', input_shape=(num_features, 1)))
model.add(MaxPooling1D(pool_size=2))
model.add(Conv1D(filters=64, kernel_size=3, activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))
# 4. 模型训练和评估
# 编译模型
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# 拆分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(scaled_features, labels, test_size=0.2, random_state=42)
# 将输入数据转换为适合深度学习模型的形状
X_train = np.expand_dims(X_train, axis=2)
X_test = np.expand_dims(X_test, axis=2)
# 训练模型
model.fit(X_train, y_train, batch_size=32, epochs=10, validation_data=(X_test, y_test))
# 评估模型
loss, accuracy = model.evaluate(X_test, y_test)
print("Accuracy:", accuracy)
在以上代码示例中,你需要根据实际情况自定义时域特征提取函数和频域特征提取函数,并根据数据集的特点调整模型的参数和架构。同时,你还可以尝试其他深度学习模型,如循环神经网络(RNN)或长短期记忆网络(LSTM),以适应不同的振动信号特征。
机械振动信号的深度学习特征提取
最新推荐文章于 2025-04-27 19:36:07 发布