周志华 机器学习 Day14

结合策略

学习器结合可能会从三个面带来好处: 首先,从统计的方来看,由于学习任务的假设往往大,可多个假设在训练集上到同等性能,此时若使用器可能因误致泛化性能不,结合多个学习器减小风险;第,从计算的方面来看,学习算法往会陷入小,有局部极小点所性能可很糟糕 通过多次运行之后行结合,降低陷入糟糕局部极小点的风险;从表示的方面来看,某些务的实假不在当前学习算法所考虑的假设空间,此时若使学习器定无,而通过结合多个学习器 由于应的假设空有所扩大,能学更好的近似



假定包含T个基学习器{h1,h2,.....,hT},其中hi在示例x上的输出为hi(x)。以下为集中对hi进行结合的常见策略。

1、平均法

简单平均法


加权平均法


2、投票法

绝对多数投票法


即某标记得票过半,则预测为该标记;否则拒绝预测。

相对多数投票法


即预测为得票最多的标记,若同时有多个标记获最高票,则从中随机选取一个。

加权投票法


3、学习法

通过另一个学习器来拟合。Stacking是学习法的典型代表。这里我们把个体学习器称为初级学习器,用于结合的学习器称为次级学习器或元学习器。


次级学习器的输入属性表示和次级学习算法对Stacking集成的泛化性能有很大影响。有研究表明,将初级学习器的输出类概率作为次级学习器的输入属性,用多响应线性回归(简称MLR)作为次级学习算法效果较好,在MLR中使用不同的属性集更佳。

注:MLR是基于线性回归的分类器,它对每个类分别进行线性回归,属于该类的训练样例所对应的输出被置为 1,其他类置为0;测试示例将被分给输出值最大的类.。

多样性

误差-分歧分解

多样性度量

---用于度量集成中个体分类器的多样性,即估算个体学习器的多样化程度。典型做法是考虑个体分类器的两两相似/不相似性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值