Vue 3 Diff算法解析:从排队老头到最长递增子序列(LIS)
前言
Vue 3的diff算法是前端框架中的一颗明珠,它通过巧妙的最长递增子序列(LIS)算法,将DOM操作的复杂度从O(n²)降低到O(n log n)。但这个算法对很多开发者来说就像一本天书,充满了抽象的概念和复杂的逻辑。今天我们用通俗易懂的比喻来揭开它的神秘面纱。
一、核心理念:老头排队的智慧
1.1 问题场景
想象一下,有一群老头要按年龄从小到大重新排队。原来的队伍是:[80, 60, 70, 90, 65]
,现在要变成:[60, 65, 70, 80, 90]
。
如果我们傻乎乎地让所有人都重新排队,那就太累了。聪明的做法是:找出那些已经站对位置的老头,让他们不动,只移动其他人。
1.2 Vue的智慧
Vue 3的diff算法就是这个思路:
- 旧队伍 = 旧的虚拟DOM节点列表
- 新队伍 = 新的虚拟DOM节点列表
- 找出不需要移动的人 = 找出最长递增子序列
- 只移动其他人 = 只操作需要变化的DOM节点
二、最长递增子序列(LIS)的核心概念
2.1 什么是子序列?
子序列的定义:从原序列中选出一些元素,保持它们在原序列中的相对顺序不变。
比喻理解:
想象一排老头站成一队:[张三(80), 李四(60), 王五(70), 赵六(90), 钱七(65)]
子序列就像从这队人中挑选一些人出来,但必须保持他们原来的前后顺序:
[张三(80), 王五(70), 赵六(90)]
✅ 是子序列(保持原顺序)[李四(60), 张三(80), 王五(70)]
❌ 不是子序列(顺序乱了)
2.2 什么是递增?
递增的定义:序列中后面的元素总是大于前面的元素。
严格递增 vs 非严格递增:
- 严格递增:
a[i] < a[i+1]
,如[1, 3, 5, 7]
- 非严格递增:
a[i] ≤ a[i+1]
,如[1, 3, 3, 7]
老头排队比喻:
- 严格递增:每个老头的年龄都比前面的大
- 非严格递增:允许年龄相同的老头相邻站立
2.3 最长递增子序列的完整定义
LIS定义:在给定序列中,找到最长的子序列,使得这个子序列是严格递增的。
实例分析:
原序列:[80, 60, 70, 90, 65, 75, 85]
所有递增子序列:
- [60, 70, 90] 长度=3
- [60, 65, 75, 85] 长度=4 ← 这是最长的
- [60, 70, 75, 85] 长度=4 ← 这也是最长的
老头排队比喻:
从一群乱站的老头中,找出最多能有几个老头已经按年龄正确排好了队。
2.4 有序 vs 无序的深度理解
2.4.1 全局有序 vs 局部有序
全局有序:整个序列都是有序的
[60, 65, 70, 75, 80] ← 完全有序
局部有序:序列中存在有序的片段
[80, 60, 70, 90, 65]
↑ ↑ ↑
[60, 70, 90] 这部分是有序的
比喻:
- 全局有序:整个队伍都按年龄排好了
- 局部有序:队伍中有一些老头恰好站对了位置
2.4.2 为什么要找局部有序?
在Vue的diff算法中:
- 全局有序:新旧节点列表完全一致,不需要任何操作
- 局部有序:找出已经正确的部分,只调整错误的部分
效率对比:
// 场景1:全局无序,需要移动所有节点
旧:[A, B, C, D, E]
新:[E, D, C, B, A]
LIS:[] (空),需要移动所有节点
// 场景2:局部有序,只需要移动部分节点
旧:[A, B, C, D, E]
新:[B, D, E, A, C]
LIS:[B, D, E],只需要移动A和C
2.4.3 相对顺序的重要性
为什么必须保持相对顺序?
原序列:[张三(80), 李四(60), 王五(70), 赵六(90)]
如果不保持相对顺序:
- 我们可能选择:
[李四(60), 张三(80), 王五(70)]
- 但这违反了"子序列"的定义,因为张三原本在李四前面
保持相对顺序的意义:
- DOM节点的位置关系:节点在DOM树中的位置有语义
- 用户体验:保持稳定的视觉锚点
- 动画连贯性:避免元素跳跃式移动
三、数据结构的巧妙运用
3.1 数组:存储排队结果
在我们的算法中,主要用到了几个关键数组:
let result = []; // 就像一个"最佳位置记录本"
let p = []; // 就像一个"前任记录本"
数组的作用比喻:
result
数组就像一个**“最佳位置记录本”**,记录着当前找到的最优排队方案p
数组就像一个**“前任记录本”**,每个人都记录着自己前面应该站谁
3.2 栈的概念:回溯机制
虽然代码中没有显式使用栈数据结构,但回溯过程体现了栈的思想:
// 回溯过程就像沿着"前任记录本"往回找
while (u-- > 0) {
result[u] = arr[v];
v = p[v]; // 找到前一个人
}
栈的作用比喻:
- 就像**“倒带回放”**,从最后一个正确位置开始,一步步往前追溯
- 每次回溯都是一次"出栈"操作,直到找到完整的排队序列
3.3 为什么用索引存储?
在result
数组中,我们存储的不是老头的年龄,而是他们在原队伍中的位置编号:
好处:
- 节省内存:索引通常是小整数,比存储完整对象省空间
- 快速定位:通过索引可以快速找到原始数据
- 避免重复:相同值的元素可以通过索引区分
坏处:
- 间接访问:需要通过索引再去访问真实数据
- 理解复杂:增加了一层抽象,不够直观
比喻说明:
就像给每个老头发一个号码牌,我们记录的是号码牌序列[2, 5, 3]
,而不是年龄序列[70, 65, 80]
。这样既节省纸张,又能快速找到对应的人。
四、贪心算法:为什么要找"最小的"?
4.1 贪心策略的核心
if (arrI < arr[result[u]]) {
// 找到更小的值,替换掉
result[u] = i;
}
为什么要贪心地选择最小值?
想象老头排队的场景:
- 当前位置需要一个年龄为70的老头
- 来了两个候选人:一个72岁,一个68岁
- 选择68岁的老头,因为他为后面更大年龄的老头留下了更多可能性
4.2 贪心的必要性
如果不选最小的会怎样?
错误示例:
原序列:[60, 80, 70, 90]
如果在位置1选择80而不是70:
- 序列变成:[60, 80, ?, ?]
- 后面的70就无法加入了
- 最终长度只有2
正确示例:
选择70:
- 序列变成:[60, 70, ?, ?]
- 后面的80、90都可以加入
- 最终长度为4
比喻:就像搭积木,每一层都要为上面的积木留出最大的可能性。选择最小的值就是为后续元素"让路"。
五、二分查找:快速定位的艺术
5.1 二分查找的使用条件
// 二分查找的前提:result数组必须是有序的
let left = 0, right = result.length - 1;
while (left < right) {
let mid = (left + right) >> 1;
if (arr[result[mid]] < arrI) {
left = mid + 1;
} else {
right = mid;
}
}
使用条件:
- 数组必须有序:
result
数组中存储的索引对应的值必须是递增的 - 查找目标明确:要找到第一个大于等于目标值的位置
5.2 二分查找的比喻
想象在图书馆找书:
- 线性查找:从第一本书开始,一本本翻,直到找到目标书籍
- 二分查找:每次翻到中间,比较后决定往左找还是往右找
在老头排队中:
- 新来一个75岁的老头
- 不需要从头开始比较,直接跳到队伍中间
- 发现中间是70岁,75>70,所以往右半边找
- 继续二分,直到找到合适位置
六、DOM操作的奥秘:为什么排好序就能高效修改?
6.1 DOM的双重身份
真实DOM既是树结构也是双向链表:
<!-- 树结构 -->
<div>
<span>节点1</span> ← → <span>节点2</span> ← → <span>节点3</span>
</div>
树结构特性:
- 父子关系明确
- 层级结构清晰
双向链表特性:
- 每个节点都有
previousSibling
和nextSibling
- 可以快速在兄弟节点间移动
6.2 递增序列的优势
当我们找到最长递增子序列后:
// 假设最长递增子序列是:[1, 3, 4](索引)
// 对应的节点:[B, D, E]
// 这些节点保持不动!
旧:A B C D E F
新:B D E A C F
为什么这样高效?
- 保持稳定的锚点:递增序列的节点就像"定海神针",不需要移动
- 减少DOM操作:只需要移动非递增序列的节点
- 利用链表特性:通过
insertBefore
等API快速插入
6.3 DOM操作的比喻
想象重新整理书架:
- 传统方法:把所有书都拿下来,重新按顺序放回去
- Vue 3方法:找出已经放对位置的书(递增序列),只移动放错位置的书
// 伪代码示例
function moveNodes(oldNodes, newNodes, lis) {
// lis中的节点保持不动
for (let i = 0; i < newNodes.length; i++) {
if (!lis.includes(i)) {
// 只移动不在递增序列中的节点
parentNode.insertBefore(newNodes[i], targetPosition);
}
}
}
七、算法完整实现代码
7.1 标准版本:返回LIS长度
/**
* 最长递增子序列 - 标准版本(返回长度)
* @param {number[]} nums - 输入数组
* @return {number} - 最长递增子序列的长度
*/
function lengthOfLIS(nums) {
if (!nums || nums.length === 0) return 0;
// tails[i] 表示长度为 i+1 的递增子序列的最小尾部元素
const tails = [];
for (let num of nums) {
// 二分查找插入位置
let left = 0, right = tails.length;
while (left < right) {
const mid = Math.floor((left + right) / 2);
if (tails[mid] < num) {
left = mid + 1;
} else {
right = mid;
}
}
// 如果 left === tails.length,说明 num 比所有元素都大,直接追加
// 否则替换 tails[left]
if (left === tails.length) {
tails.push(num);
} else {
tails[left] = num;
}
}
return tails.length;
}
7.2 Vue 3版本:返回索引序列
/**
* Vue 3 中的 getSequence 函数
* @param {number[]} arr - 输入数组(通常是新旧节点的索引映射)
* @return {number[]} - 最长递增子序列的索引数组
*/
function getSequence(arr) {
const len = arr.length;
const result = [0]; // 存储当前最长递增子序列的索引
const p = new Array(len); // 存储前驱索引,用于回溯
let i, j, u, v, c;
for (i = 0; i < len; i++) {
const arrI = arr[i];
// Vue 3 特殊处理:0 表示新增节点,跳过
if (arrI !== 0) {
j = result[result.length - 1];
// 如果当前元素比 result 中最后一个元素大,直接追加
if (arr[j] < arrI) {
p[i] = j; // 记录前驱
result.push(i);
continue;
}
// 二分查找:找到第一个大于等于 arrI 的位置
u = 0;
v = result.length - 1;
while (u < v) {
c = (u + v) >> 1; // 等价于 Math.floor((u + v) / 2)
if (arr[result[c]] < arrI) {
u = c + 1;
} else {
v = c;
}
}
// 如果找到更小的值,替换它
if (arrI < arr[result[u]]) {
if (u > 0) {
p[i] = result[u - 1]; // 记录前驱
}
result[u] = i; // 替换
}
}
}
// 回溯构建完整的最长递增子序列
u = result.length;
v = result[u - 1];
while (u-- > 0) {
result[u] = v;
v = p[v];
}
return result;
}
7.3 通用版本:返回实际序列
/**
* 最长递增子序列 - 通用版本(返回实际序列)
* @param {number[]} nums - 输入数组
* @return {number[]} - 最长递增子序列的实际值
*/
function getLISSequence(nums) {
if (!nums || nums.length === 0) return [];
const len = nums.length;
const dp = new Array(len).fill(1); // dp[i] 表示以 nums[i] 结尾的最长递增子序列长度
const prev = new Array(len).fill(-1); // 前驱索引
let maxLength = 1;
let maxIndex = 0;
// 动态规划求解
for (let i = 1; i < len; i++) {
for (let j = 0; j < i; j++) {
if (nums[j] < nums[i] && dp[j] + 1 > dp[i]) {
dp[i] = dp[j] + 1;
prev[i] = j;
}
}
if (dp[i] > maxLength) {
maxLength = dp[i];
maxIndex = i;
}
}
// 回溯构建序列
const result = [];
let current = maxIndex;
while (current !== -1) {
result.unshift(nums[current]);
current = prev[current];
}
return result;
}
7.4 优化版本:O(n log n) 时间复杂度
/**
* 最长递增子序列 - 优化版本
* @param {number[]} nums - 输入数组
* @return {number[]} - 最长递增子序列的实际值
*/
function getLISOptimized(nums) {
if (!nums || nums.length === 0) return [];
const len = nums.length;
const tails = []; // tails[i] 存储长度为 i+1 的递增子序列的最小尾部元素
const tailsIndex = []; // 对应的索引
const prev = new Array(len).fill(-1); // 前驱索引
for (let i = 0; i < len; i++) {
const num = nums[i];
// 二分查找插入位置
let left = 0, right = tails.length;
while (left < right) {
const mid = Math.floor((left + right) / 2);
if (tails[mid] < num) {
left = mid + 1;
} else {
right = mid;
}
}
// 更新前驱关系
if (left > 0) {
prev[i] = tailsIndex[left - 1];
}
// 更新 tails 数组
if (left === tails.length) {
tails.push(num);
tailsIndex.push(i);
} else {
tails[left] = num;
tailsIndex[left] = i;
}
}
// 回溯构建序列
const result = [];
let current = tailsIndex[tailsIndex.length - 1];
while (current !== -1) {
result.unshift(nums[current]);
current = prev[current];
}
return result;
}
7.5 测试用例
// 测试函数
function testLIS() {
const testCases = [
[10, 9, 2, 5, 3, 7, 101, 18], // 期望: [2, 3, 7, 18] 或 [2, 3, 7, 101]
[0, 1, 0, 3, 0, 4, 5, 7], // 期望: [0, 1, 3, 4, 5, 7]
[7, 7, 7, 7, 7, 7, 7], // 期望: [7]
[1, 3, 6, 7, 9, 4, 10, 5, 6], // 期望: [1, 3, 4, 5, 6] 或其他
[] // 期望: []
];
testCases.forEach((testCase, index) => {
console.log(`测试用例 ${index + 1}: [${testCase}]`);
console.log(`长度: ${lengthOfLIS(testCase)}`);
console.log(`序列: [${getLISOptimized(testCase)}]`);
console.log(`Vue3索引: [${getSequence(testCase)}]`);
console.log('---');
});
}
// 运行测试
testLIS();
7.6 算法复杂度分析
版本 | 时间复杂度 | 空间复杂度 | 特点 |
---|---|---|---|
通用版本(DP) | O(n²) | O(n) | 易理解,适合小数据 |
优化版本 | O(n log n) | O(n) | 高效,适合大数据 |
Vue 3版本 | O(n log n) | O(n) | 专门优化,返回索引 |
7.7 实际应用示例
// Vue 3 diff 算法中的应用示例
function patchKeyedChildren(oldChildren, newChildren) {
// ... 前置处理 ...
// 构建新旧节点索引映射
const newIndexToOldIndexMap = new Array(toBePatched);
for (let i = 0; i < toBePatched; i++) {
newIndexToOldIndexMap[i] = 0; // 0 表示新增
}
// 填充映射关系
for (let i = oldStartIndex; i <= oldEndIndex; i++) {
const prevChild = oldChildren[i];
const newIndex = keyToNewIndexMap.get(prevChild.key);
if (newIndex !== undefined) {
newIndexToOldIndexMap[newIndex - newStartIndex] = i + 1;
}
}
// 获取最长递增子序列
const increasingNewIndexSequence = getSequence(newIndexToOldIndexMap);
// 根据 LIS 结果移动节点
let j = increasingNewIndexSequence.length - 1;
for (let i = toBePatched - 1; i >= 0; i--) {
const nextIndex = newStartIndex + i;
const nextChild = newChildren[nextIndex];
if (j < 0 || i !== increasingNewIndexSequence[j]) {
// 需要移动的节点
move(nextChild, container, anchor);
} else {
// 在 LIS 中的节点,不需要移动
j--;
}
}
}
八、算法实现详解
8.1 核心数据结构
function getSequence(arr) {
let len = arr.length;
let result = [0]; // 最佳位置记录本
let p = new Array(len); // 前任记录本
// ... 算法实现
}
8.2 构建过程
for (let i = 0; i < len; i++) {
let arrI = arr[i];
if (arrI !== 0) { // Vue 3中0表示新增节点,跳过
let u = result.length;
let v = result[u - 1];
if (arr[v] < arrI) {
// 直接追加:新老头年龄更大,直接站到队尾
p[i] = v;
result.push(i);
} else {
// 二分查找:找到合适位置插入
// ... 二分查找逻辑
}
}
}
8.3 回溯重建
// 沿着"前任记录本"回溯,重建完整序列
let u = result.length;
let v = result[u - 1];
while (u-- > 0) {
result[u] = arr[v];
v = p[v]; // 找前任
}
九、Vue 3中的特殊处理
9.1 为什么跳过0?
在Vue 3的diff算法中:
0
表示新增的节点- 新增节点不参与LIS计算
- 只有已存在的节点才需要考虑移动
9.2 索引映射的巧思
// 新旧节点的索引映射
const keyToNewIndexMap = new Map();
for (let i = 0; i < newChildren.length; i++) {
keyToNewIndexMap.set(newChildren[i].key, i);
}
// 构建索引数组用于LIS计算
const newIndexToOldIndexMap = new Array(toBePatched);
for (let i = 0; i < toBePatched; i++) {
newIndexToOldIndexMap[i] = 0; // 0表示新增
}
十、性能优化的考量
10.1 时间复杂度分析
- 暴力方法:O(n²) - 每个节点都要和其他节点比较
- LIS方法:O(n log n) - 二分查找的威力
- 空间复杂度:O(n) - 需要额外的数组存储
10.2 实际应用场景
Vue 3的diff算法特别适合:
- 列表渲染:大量相似节点的重排
- 动画过渡:需要保持某些元素稳定
- 表格操作:行列的增删改查
十一、总结
Vue 3的diff算法通过最长递增子序列,巧妙地解决了DOM更新的性能问题。它的核心思想可以总结为:
- 最长递增子序列的本质:在保持相对顺序的前提下,找出最长的递增片段
- 有序性的巧妙利用:区分全局有序和局部有序,专注于局部优化
- 数据结构的合理运用:数组存储结果,栈思想回溯,索引节省空间
- 贪心策略:每一步都选择最优解,为后续留下最大可能性
- 二分查找:在有序数组中快速定位,提升查找效率
- DOM特性利用:利用DOM的双向链表特性,减少不必要的操作
- 保持稳定锚点:让已经正确的节点保持不动,只移动需要调整的节点
- 完整的代码实现:从标准版本到Vue 3专用版本,满足不同场景需求
这就像一个经验丰富的队长,能够快速识别出队伍中已经站对位置的人,然后用最少的调整让整个队伍变得有序。这种智慧不仅体现在算法的巧妙设计上,更体现在对实际应用场景的深刻理解上。
通过这种方式,Vue 3不仅提升了性能,还为开发者提供了更好的用户体验。当我们理解了这些原理后,就能更好地编写高效的Vue应用,让我们的代码像这些排队的老头一样,井然有序且高效运行。