CAD多角度剖面3D建模与深度学习神经网络的复合研究构想

该文探讨了CAD多角度剖面在3D建模中的应用,结合深度学习神经网络进行空间分析,强调在避免属性损失和扭曲的同时,通过网络推理预测形状、移动方向和体积变化。引用了胶囊网络理念,以改善GIS系统和建筑空间设计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

空间坐标
空间坐标 GIS系统
建筑空间设计CAD

在这里插入图片描述
剖析元素:
俯视图
侧面图
抽取拐点图
不同方位的截面图
移动方向、截面图面积形状和大小、体积占位定义

在这里插入图片描述在这里插入图片描述
体积模型的位移和增长/缩小形状 /不同方位的视图面积改变大小/整模型占位体积改变大小
在这里插入图片描述
避免深度神经网络造成的边缘信息传输过程中的属性损失和扭曲
推理:
基于深度学习神经网络推理1 形状2 移动方向 3移动面大小 4整体体积模型的体积占位增速

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI深度学习算法实战代码解读

离下一篇原创,还差5个打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值