自然语言处理之AI双向循环Bidirectional-LSTM

本文介绍了Keras之父Chollet提出的双向循环层(Bidirectional LSTM)在文本数据挖掘中的作用。双向循环LSTM通过正序和倒序两种方式处理文本,提供更丰富的数据表示,有助于深入挖掘时序数据中的信息,特别是在理解和解释句子意义方面具有重要意义。在Keras中,可以使用`keras.layers.Bidirectional`层轻松实现这一功能。
摘要由CSDN通过智能技术生成

Keras之父,Chollet提出文本数据挖掘的升级版算法,双向循环层(bidirectional recurrent layer)。
文本理解的方式越丰富越好,对同样的文本数据产生不同的表达方法(编码方式),组合型表达,不管是正序型循环表示还是倒序型表示,数据表达差异越多,提供足够的视角去看待数据本身,挖掘出来不同层面和角度的蕴含在数据中的信息。特别是时序在文本中有相对重要位置,对理解句子意义本身占据较大重要性时。

在这里插入图片描述

在keras中,双向循环LSTM是蕴含在Bidirectional层中的,我们只要调用keras.layers层中的Bidirectional层即可。

import keras 
from keras.models import Sequential
from keras import layers
from keras.optimizers import RMSprop

model.add(layers.Embedding(max_features, 32))
model.add(layers.Bidirectional(layers.LSTM(32)))
model.add(layers.Dense(1, activation='sigmoid
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI深度学习算法实战代码解读

离下一篇原创,还差5个打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值