Keras之父,Chollet提出文本数据挖掘的升级版算法,双向循环层(bidirectional recurrent layer)。
文本理解的方式越丰富越好,对同样的文本数据产生不同的表达方法(编码方式),组合型表达,不管是正序型循环表示还是倒序型表示,数据表达差异越多,提供足够的视角去看待数据本身,挖掘出来不同层面和角度的蕴含在数据中的信息。特别是时序在文本中有相对重要位置,对理解句子意义本身占据较大重要性时。
在keras中,双向循环LSTM是蕴含在Bidirectional层中的,我们只要调用keras.layers层中的Bidirectional层即可。
import keras
from keras.models import Sequential
from keras import layers
from keras.optimizers import RMSprop
model.add(layers.Embedding(max_features, 32))
model.add(layers.Bidirectional(layers.LSTM(32)))
model.add(layers.Dense(1, activation='sigmoid