机器学习算法梳理::逻辑回归(Logistic)

本文详细介绍了Logistic回归,包括它与线性回归的区别和联系,以及为什么不用线性回归做分类。重点讨论了Logistic回归损失函数的极大似然推导、最优化算法如牛顿法和拟牛顿法,并解释了为何Logistic回归不使用平方损失函数以及参数不能直接公式求解的原因。
摘要由CSDN通过智能技术生成

【学习任务】

 

1.Logistic回归损失函数的极大似然推导:西瓜书公式3.27怎么推来的?

2.Logistic回归损失函数的最优化算法:什么是牛顿法、拟牛顿法?

3.为什么不用线性回归做分类?

4.Logistic回归为什么不像线性回归那样用平方损失函数?

5.Logistic回归的参数为什么不像线性回归那样直接公式求解?

6.Logistic回归与线性回归有哪些联系?

 

首先认识到底什么是logistic回归(概念来源百度百科)?     

         logistic回归是一种广义线性回归(generalized linear model),因此与多重线性回归分析有很多相同之处。它们的模型形式基本上相同,都具有 w'x+b(w'表示w的转置),其中w和b是待求参数,其区别在于他们的因变量不同,多重线性回归直接将w'x+b作为因变量,即y =w'x+b,而logistic回归则通过函数L将w'x+b对应一个隐状态p,p =L(w'x+b),然后根据p 与1-p的大小决定因变量的值。如果L是logistic函数,就是logistic回归,如果L是多项式函数就是多项式回归。 

          logistic回归的因变量可以是二分类的,也可以是多分类的,但是二

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值