【学习任务】
1.Logistic回归损失函数的极大似然推导:西瓜书公式3.27怎么推来的?
2.Logistic回归损失函数的最优化算法:什么是牛顿法、拟牛顿法?
3.为什么不用线性回归做分类?
4.Logistic回归为什么不像线性回归那样用平方损失函数?
5.Logistic回归的参数为什么不像线性回归那样直接公式求解?
6.Logistic回归与线性回归有哪些联系?
首先认识到底什么是logistic回归(概念来源百度百科)?
logistic回归是一种广义线性回归(generalized linear model),因此与多重线性回归分析有很多相同之处。它们的模型形式基本上相同,都具有 w'x+b(w'表示w的转置),其中w和b是待求参数,其区别在于他们的因变量不同,多重线性回归直接将w'x+b作为因变量,即y =w'x+b,而logistic回归则通过函数L将w'x+b对应一个隐状态p,p =L(w'x+b),然后根据p 与1-p的大小决定因变量的值。如果L是logistic函数,就是logistic回归,如果L是多项式函数就是多项式回归。
logistic回归的因变量可以是二分类的,也可以是多分类的,但是二