数字IC后端设计实现 | 如何自动删除Innovus 中冗余的hold buffer?

我们都知道在postCTS阶段做optDesign时序优化时需要进行hold violation的fixing。所以这个过程势必要通过插hold buffer来解决hold violation。这类hold buffer的名字带有"PHC"的关键词。

select_obj [dbGet top.insts.name PHC]

llength [dbGet top.insts.name PHC]

在后续的postRoute阶段做时序优化阶段,工具默认也有一个area reclaim的步骤。这个步骤主要的目的是在设计critical path上进一步把path上的cell面积做小。

工具会把setup critical path上冗余的hold buffer删掉,来进一步优化setup。

但是工具默认不会删除non-critical path上冗余的hold buffer。

这就会出现很多timing path的hold timing margin偏大的情况。一个设计要做出一个合理的结果,必须确保IC实现各个环节各个步骤的结果都是合理的。

在这里插入图片描述

下面分享解决这个问题的几个方法。

方法一: 报告timing并做基于hold的面积优化

Legacy UI:

timeDesign -postRoute
reclaimArea -maintainHold
Common UI:

time_design -post_route
opt_area -hold_aware

方法二: 设置opt优化mode

Legacy UI:

setOptMode -postRouteAreaReclaim {none | setupAware | holdAndSetupAware}
optDesign -postRoute
Common UI:

set_db opt_post_route_area_reclaim {none | setup_aware | hold_and_setup_aware}
opt_design -post_route

使用这个方法工具删除多余的hold buffer后不会引起setup和drv violation。

听说Latch可以高效修hold违例(Timing borrowing及其应用)

所以,当PT signoff需要插入很多hold buffer,返回PR工具插不进去时,我们可以使用今天的这个方法来删掉部分冗余的hold buffer来释放更多的空间。

当然,这个提前是PT和PR之间的timing correlation比较好的情况。

另外,我们还可以自己针对绕线或空间比较紧张的区域,人工删掉部分带PHC的hold buffer来释放点空间。

在这里插入图片描述
【思考题】如下所示timing path的removal存在600ps+的violation。请问这个hold violation存在的主要原因是什么?这么大的hold violation应该如何修复呢?

在这里插入图片描述

数据集介绍:多类别动物目标检测数据集 一、基础信息 数据集名称:多类别动物目标检测数据集 图片数量: - 训练集:6,860张图片 - 验证集:1,960张图片 - 测试集:980张图片 总计:9,800张含动态场景的动物图像 分类类别: Alpaca(羊驼)、Camel(骆驼)、Fox(狐狸)、Lion(狮子)、Mouse(鼠类)、Ostrich(鸵鸟)、Pig(猪)、Rabbit(兔子)、Rhinoceros(犀牛)、Shark(鲨鱼)、Sheep(绵羊)、Snake(蛇)、Whale(鲸鱼) 标注格式: YOLO格式标注,包含目标检测所需的归一化坐标及类别索引,适用于YOLOv5/v7/v8等系列模型训练。 数据特性: 覆盖航拍、地面视角等多种拍摄角度,包含动态行为捕捉及群体/单体目标场景。 二、适用场景 野生动物监测系统: 支持构建无人机/红外相机AI识别系统,用于自然保护区动物种群追踪与生态研究。 智慧农业管理: 适用于畜牧养殖场动物行为分析、数量统计及健康监测等自动化管理场景。 生物多样性研究: 为陆地/海洋生物分布研究提供标注数据支撑,助力濒危物种保护项目。 教育科研应用: 可作为计算机视觉课程实践素材,支持目标检测、迁移学习等AI教学实验。 三、数据集优势 跨物种覆盖全面: 包含13类陆生/水生动物,涵盖家畜、野生动物及濒危物种,支持复杂场景下的模型泛化训练。 动态场景丰富: 捕捉动物运动、群体互动等真实行为模式,提升模型对非静态目标的检测鲁棒性。 标注体系规范: 严格遵循YOLO标注标准,提供精确的边界框定位,支持即插即用的模型训练流程。 多场景适配性: 数据来源涵盖航拍影像、地面监控等多维度视角,适用于农业、生态保护、科研等跨领域应用。 类别平衡优化: 通过分层抽样保证各类别数据分布合理性,避免长尾效应影响模型性能。
数据集介绍:陆生动物多场景目标检测数据集 一、基础信息 数据集名称:陆生动物多场景目标检测数据集 数据规模: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 分类类别: - 家畜类:Cattle(牛)、Horse(马)、Sheep(羊) - 宠物类:Cat(猫)、Dog(狗) - 野生动物类:Bear(熊)、Deer(鹿)、Elephant(大象)、Monkey(猴子) - 禽类:Chicken(鸡) 标注格式: YOLO格式标注,包含目标边界框坐标和10类动物标签,支持多目标检测场景 数据特性: 涵盖俯拍视角、户外自然场景、牧场环境等多角度拍摄数据 二、适用场景 农业智能化管理: 支持开发牲畜数量统计、行为分析系统,适用于现代化牧场管理 野生动物保护监测: 可用于构建自然保护区动物识别系统,支持生物多样性研究 智能安防系统: 训练农场入侵检测模型,识别熊等危险野生动物 宠物智能硬件: 为宠物智能项圈等设备提供多动物识别训练数据 教育科研应用: 适用于动物行为学研究和计算机视觉教学实验 三、数据集优势 物种覆盖全面: 包含10类高价值陆生动物,覆盖畜牧、宠物、野生动物三大场景需求 标注质量优异: YOLO格式标注严格遵循标准规范,支持YOLOv5/v7/v8等主流检测框架直接训练 场景多样性突出: 包含航拍视角、近距离特写、群体活动等多种拍摄角度和场景 大规模训练保障: 超12,000张标注图片满足深度神经网络训练需求 现实应用适配性: 特别包含动物遮挡、群体聚集等现实场景样本,提升模型部署效果
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值