解析大数据:从流数据摄取到交互式可视化的完整生态系统

本文详细阐述了大数据处理的关键组件,如数据摄取(Kafka、Logstash/ELK)、原始存储(HDFS、S3)、处理(Hadoop、Spark)、转换索引(Pig、Elasticsearch)、数据库(NoSQL、数据仓库)以及分析和可视化工具(如Presto、Tableau)。特别强调了ApacheKafka在大数据流处理中的重要性及其优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大数据处理涉及处理和分析大型复杂数据集的技术和技术。“大数据”通常指的是传统数据库和处理工具无法处理的数据集。 例如:应用程序日志、用户交互日志:这些大数据用于分析用户互动、偏好和行为,以改进内容推荐算法并提升用户参与度。 各种组件共同工作以处理、存储和分析这些大型数据集。这些组件共同形成一个大数据处理生态系统。

大数据处理的关键组件:

1. 数据摄取和传输(Kafka、Logstash(ELK))

批处理和流处理:数据可以分批摄取,也可以以实时流模式处理。 批处理涉及按预定义的块收集和处理数据,而流摄取处理连续生成并以准实时方式处理的数据。 a8dc8f3d5d5f5813ca73b6be95aa6a7a.png
1*wzreZ5GWTQlXhbK6Il1q6g.png
Apache Kafka: 用于构建实时数据管道和流应用的广泛使用平台。 为什么选择Kafka? 1.可以处理每秒数百万个事件。 🚅 2.可靠性:即使发生故障,数据也不会丢失:所有消息都写入磁盘并复制到多个代理,以确保它们不会丢失。 3.默认情况下,它保证至少一次传递。 4.回放数据:如果需要,可以重新播放数据。 🔁 5.高度可扩展:可以添加更多代理来处理不断增加的负载。分区器确保消息均匀分布在分区上: 6.强大的API和集成:用于与其他系统进行数据摄取的Kafka Conne
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小技术君

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值