NA和F数

Numerical Aperture and F-Number

https://www.eckop.com/resources/optics/numerical-aperture-and-f-number/

https://www.microscopyu.com/microscopy-basics/numerical-aperture

Numerical Aperture (also termed Object-Side Aperture ) is a value (often symbolized by the abbreviation NA ) originally defined by Abbe(阿贝)for microscope objectives (显微镜物镜)and condensers.

Numerical aperture (NA) refers to the cone of light that is made from a focusing lens and describes the light gathering capability of the lens (similar to f/# ). NA is defined by the following equation, where n is the index of refraction of the medium (often n=1 for air), and α is the half angle of the cone of light exiting the lens pupil.

N A = n ∗ sin ⁡ ( α ) NA=\text{n}*\sin (\alpha ) NA=nsin(α)

In the numerical aperture equation, n represents the refractive index of the medium between the objective front lens and the specimen, and α is the one-half angular aperture of the objective.
在这里插入图片描述

The numerical aperture of a microscope objective is a measure of its ability to gather light and resolve fine specimen detail at a fixed object distance. Image-forming light waves pass through the specimen and enter the objective in an inverted cone as illustrated in Figure 1 (above). A longitudinal slice of this cone of light reveals the angular aperture, a value that is determined by the focal length of the objective.

Equating to f/#

Now that we have briefly explained what numerical aperture is, we can equate it to f/#. As explained here, f/# is also a measure of how much light can get through a lens. f/# of a simple lens is defined by the following equation, where f is the focal length of the lens and D is the diameter (or more specifically the entrance pupil diameter for more complex lens systems).

f / # = f D f/\#=\frac{f}{D} f/#=Df

Using Geometric Relationships

In order to equate NA and f/#, we can use simple geometric relationships. Figure 3.1 shows a simple lens focusing light rays (blue lines) from infinity to a point. This creates a cone of light that can be described by numerical aperture using the previous equation. The half angle, α, can now be defined by the following equation:

α = arctan ⁡ ( D 2 f ) \alpha =\arctan (\frac{D}{2f}) α=arctan(2fD)
在这里插入 Fig. 3.1 Simple Lens图片描述
Fig. 3.1 Simple Lens

Now if we insert this definition for α into the equation for NA we get:

N A = n ∗ sin ⁡ ( arctan ⁡ ( D 2 f ) ) NA=\text{n}*\sin (\arctan (\frac{D}{2f})) NA=nsin(arctan(2fD))

Now if we remember that the f/# = f/D, the NA and f/# can be equated a shown below:

N A = n ∗ sin ⁡ ( arctan ⁡ ( 1 2 f / # ) ) NA=n*\sin (\arctan (\frac{1}{2f/\#})) NA=nsin(arctan(2f/#1))

This is an exact equation relating the NA to the f/#, but it is often convenient to have an approximation for this. When n = 1 (medium is air) and if we use a small angle approximation (sin α ≈ tan α) then:

N A ≈ 1 2 f / # NA\approx \frac{1}{2f/\#} NA2f/#1

The small angle approximation above is the most common equation for relating NA and f/#.

If the medium is not air, as is common for some microscope objectives, the approximation above can be multiplied by the index of refraction of the medium as shown below.

N A n ≈ n ∗ 1 2 f / # N{{A}_{n}}\approx n*\frac{1}{2f/\#} NAnn2f/#1

Why Use Numerical Aperture?

There are a few main reasons to use NA instead of f/#.

  1. NA is widely used to specify microscope objectives.
  2. NA allows for a precise calculation of the point spread function (PSF) and the modulation transfer function (MTF)
  3. The approximation for NA and f/# significantly breaks down at speeds faster than f/1.2.

Numerical Aperture and Image Resolution

https://www.microscopyu.com/tutorials/imageformation-airyna

The image resolution, (D) is defined by the equation below,which is clearly influenced by the objective numerical aperture. Note that lower values of D indicate higher resolution.

D = 0.61 λ N A D=\frac{0.61\lambda}{NA} D=NA0.61λ
在这里插入图片描述

the Airy pattern radius from the central peak to the first minimum is given by the equation:

r ( A i r y ) = 1.22 λ 2 N A {{r}_{(Airy)}}=\frac{1.22\lambda }{2NA} r(Airy)=2NA1.22λ

where r(Airy) is the Airy radius, λ is the wavelength of illuminating light, and NA(Obj) is the objective numerical aperture.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值