1.什么是递归?
是指在定义自生的过程中有直接或间接的调用自身的一种算法
2.什么样的问题可以用递归算法?
- 一个问题可以被分解为若干的子问题
- 子问题和上层问题的解决方案一致
- 外层问题的解决依赖于子问题的解决
3.举个例子
计算n的阶乘:n! =n*(n-1)!
使用的时候要注意两点,第一不能无限递归下去,那就成死循环了,第二要计算递归方法的当前值,需要重复调用自身直到达到停止条件为止。
/*
计算n的阶乘
*/
public static int getN(int n)
{
if (n==0)
{
return 1;
}
else {
return getN(n-1)*n;
}
}
第二个案例:非彼拉切数列
1,1,2,3,5,8,13,21.。。。。。。
/*
斐波拉且数列 1,1,2,3,5....
*/
public static int getFB(int n)
{
int res=0;
if (n<1)
{
return res;
}
if (n==1||n==2)
{
return 1;
}
else
{
return getFB(n-1)+getFB(n-2);
}
}
说到递归了就记一个递归的例子,有这样的一个场景,删除评论,当删除父评论的时候,他的子评论需要一并删除,而且他的子评论都有父评论和子评论,所以需要使用递归的方法将该节点下的所有子节点全部找出来,放在集合里面,返回然后进行删除。
private List<FeedbackCommentDTO> getAllFeedbackCommentDTOByParentId(List<FeedbackCommentDTO> list, Long parentId) {
if (parentId == 0) {
return list;
}
FeedbackCommentDTO condition = new FeedbackCommentDTO();
condition.setParentId(parentId);
List<FeedbackCommentDTO> subComments = feedbackCommentMapper.select(condition);
if (subComments != null && subComments.size() > 0) {
list.addAll(subComments);
subComments.stream()
.forEach(subComment -> getAllFeedbackCommentDTOByParentId(list, subComment.getId()));
}
return list;
}
貌似很完美,但是有个问题也是显而易见的,就是可能当评论数有个几百条的时候,删除起来极其费劲,甚至有可能使系统崩掉。为什么呢?
大家都知道递归的实现是通过调用函数本身,函数调用的时候,每次调用时要做地址保存,参数传递等,这是通过一个递归工作栈实现的。具体是每次调用函数本身要保存的内容包括:局部变量、形参、调用函数地址、返回值。那么,如果递归调用N次,就要分配N局部变量、N形参、N调用函数地址、N返回值,这势必是影响效率的,同时,这也是内存溢出的原因,因为积累了大量的中间变量无法释放。
似乎代码简洁和效率不能共存。那么有没有一种方法能拥有递归代码简洁的好处,同时给我们带来更快的速率么?算法的世界会告诉你,一切皆有可能。它的名字叫做尾递归。
顾名思义,尾递归就是从最后开始计算, 每递归一次就算出相应的结果, 也就是说, 函数调用出现在调用者函数的尾部, 因为是尾部, 所以根本没有必要去保存任何局部变量。直接让被调用的函数返回时越过调用者, 返回到调用者的调用者去。尾递归就是把当前的运算结果(或路径)放在参数里传给下层函数,深层函数所面对的不是越来越简单的问题,而是越来越复杂的问题,因为参数里带有前面若干步的运算路径。
尾递归是极其重要的,不用尾递归,函数的堆栈耗用难以估量,需要保存很多中间函数的堆栈。比如f(n, sum) = f(n-1) + value(n) + sum,会保存n个函数调用堆栈,而使用尾递归f(n, sum) = f(n-1, sum+value(n)),这样则只保留后一个函数堆栈即可。
参考博客:
链接:https://www.jianshu.com/p/6bdc8e3637f2 作者:爱情小傻蛋