数据结构5--递归

1.什么是递归?

    是指在定义自生的过程中有直接或间接的调用自身的一种算法

2.什么样的问题可以用递归算法?

  1.    一个问题可以被分解为若干的子问题
  2. 子问题和上层问题的解决方案一致
  3. 外层问题的解决依赖于子问题的解决

3.举个例子

  计算n的阶乘:n! =n*(n-1)!

  使用的时候要注意两点,第一不能无限递归下去,那就成死循环了,第二要计算递归方法的当前值,需要重复调用自身直到达到停止条件为止。

/*
    计算n的阶乘
     */
    public static int getN(int n)
    {
        if (n==0)
        {
           return 1;
        }
        else {
            return getN(n-1)*n;
        }
    }

 第二个案例:非彼拉切数列

1,1,2,3,5,8,13,21.。。。。。。

 /*
    斐波拉且数列 1,1,2,3,5....
     */
    public  static  int getFB(int n)
    {
        int res=0;
        if (n<1)
        {
            return res;
        }
        if (n==1||n==2)
        {
           return 1;
        }
        else
        {
            return getFB(n-1)+getFB(n-2);
        }
    }

 说到递归了就记一个递归的例子,有这样的一个场景,删除评论,当删除父评论的时候,他的子评论需要一并删除,而且他的子评论都有父评论和子评论,所以需要使用递归的方法将该节点下的所有子节点全部找出来,放在集合里面,返回然后进行删除。

 private List<FeedbackCommentDTO> getAllFeedbackCommentDTOByParentId(List<FeedbackCommentDTO> list, Long parentId) {
        if (parentId == 0) {
            return list;
        }
        FeedbackCommentDTO condition = new FeedbackCommentDTO();
        condition.setParentId(parentId);
        List<FeedbackCommentDTO> subComments = feedbackCommentMapper.select(condition);
        if (subComments != null && subComments.size() > 0) {
            list.addAll(subComments);
            subComments.stream()
                    .forEach(subComment -> getAllFeedbackCommentDTOByParentId(list, subComment.getId()));
        }
        return list;
    }

貌似很完美,但是有个问题也是显而易见的,就是可能当评论数有个几百条的时候,删除起来极其费劲,甚至有可能使系统崩掉。为什么呢?

   大家都知道递归的实现是通过调用函数本身,函数调用的时候,每次调用时要做地址保存,参数传递等,这是通过一个递归工作栈实现的。具体是每次调用函数本身要保存的内容包括:局部变量、形参、调用函数地址、返回值。那么,如果递归调用N次,就要分配N局部变量、N形参、N调用函数地址、N返回值,这势必是影响效率的,同时,这也是内存溢出的原因,因为积累了大量的中间变量无法释放。

 似乎代码简洁和效率不能共存。那么有没有一种方法能拥有递归代码简洁的好处,同时给我们带来更快的速率么?算法的世界会告诉你,一切皆有可能。它的名字叫做尾递归。

顾名思义,尾递归就是从最后开始计算, 每递归一次就算出相应的结果, 也就是说, 函数调用出现在调用者函数的尾部, 因为是尾部, 所以根本没有必要去保存任何局部变量。直接让被调用的函数返回时越过调用者, 返回到调用者的调用者去。尾递归就是把当前的运算结果(或路径)放在参数里传给下层函数,深层函数所面对的不是越来越简单的问题,而是越来越复杂的问题,因为参数里带有前面若干步的运算路径。

尾递归是极其重要的,不用尾递归,函数的堆栈耗用难以估量,需要保存很多中间函数的堆栈。比如f(n, sum) = f(n-1) + value(n) + sum,会保存n个函数调用堆栈,而使用尾递归f(n, sum) = f(n-1, sum+value(n)),这样则只保留后一个函数堆栈即可。

 

 


参考博客:
链接:https://www.jianshu.com/p/6bdc8e3637f2 作者:爱情小傻蛋

 

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

时空恋旅人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值