去年开始使用AUC作为算法的其中一种离线评估指标,但是对AUC的理解其实非常肤浅。刚好最近有个小伙伴抛出一条AUC的另一种计算公式,问大家谁可以解释。乐于分享的我,深入研究了一下AUC,整了一份PPT,由浅入深,帮助大家从概率意义的角度理解AUC。
红框框住的公式就是引发这场AUC小探索的导火线。咋一看挺复杂的,其实原理非常简单。且听我慢慢讲解。
内容分两大部分:一是回顾一下AUC的基础知识;二是从概率意义的角度理解AUC。(男人不止一面,AUC也是。)
AUC,顾名思义,它其实是一个面积,是ROC曲线下面的面积。这是AUC的物理意义。
AUC越接近1,模型效果越好。
精确率、召回率等指标,都需要设定一个阈值去判别是属于正类还是负类,例如预测分大于等于0.5判别为正类,小于0.5判别为负类。如何设定这个阈值,是个问题。而AUC这个指标则不需要设阈值
深入理解AUC——从概率意义的角度
最新推荐文章于 2023-03-08 12:00:09 发布