自己尝试__call__和yield实现pytorch底层的Dataset和dataloader的大致原理

首先写个数据集的基类,使用__call__函数调用__getitem__函数

class Datasetbase():
    def __init__(self) -> None:
        pass
    def __call__(self,index):
        yield self.__getitem__(index)
    def __getitem__(self):
        pass
    def __len__(self):
        pass

这样后面写自己的数据集中的__getitem__后,就会被父类的__call__调用了

class mydataset(Datasetbase):
    def __init__(self) -> None:
        super().__init__()
        self.list = [1,2,3,4,5]

    def __getitem__(self,index):
        
        return self.list[index]

dataloader的作用有两个是实现并行,和数据的可迭代。如下使用yied实现了数据的可迭代,并行暂时未实现

class dataloader():
    def __init__(self,list) -> None:
        self.list = list 

    def __iter__(self):
        for i in range(self.__len__()):
            yield self.list[i]

    def __len__(self):
        return len(self.list.list)
T = mydataset()
t_iter = dataloader(T)

for i in t_iter:
    print(i)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值