卡塔兰数:96. 不同的二叉搜索树

给定一个整数 n,求以 1 ... n 为节点组成的二叉搜索树有多少种?

示例:

输入: 3
输出: 5
解释:
给定 n = 3, 一共有 5 种不同结构的二叉搜索树:

   1         3     3      2      1
    \       /     /      / \      \
     3     2     1      1   3      2
    /     /       \                 \
   2     1         2                 3

1、题目分析

看到这个题就觉得熟悉,之前在数据结构的课上看到过,但是具体原理忘记了。然后看了discuss之后这个原来就是传说的卡 塔兰数,这是比利时一个数学家卡塔兰的人发明的,因此就以它的名字来命名。

G(n)用来表示,n个节点组成的不同二叉搜索树;f(i)(i的范围是1~i)用来表示以i为根节点的二叉搜索树的个数。

G(n) = f(1)+f(2)+f(3)+.......+f(n)

所以计算出来f(i)整个结果都出来了,重心就转移到f(i)的计算。

如果以i为根节点,左子树的节点的个数是i-1,也就是0~i-1,右子树的节点的个数是n-i,也就是i+1~n.

所以f(i) = G(i-1)*G(n-i)

因此G(n)=G(0)*G(n-1)+G(1)*G(n-2)+.........+G(n-1)*G(0);G(0)=1,G(1)=1

卡塔兰数公式:C0=1,C{n+1}=\frac{(2n+1)*2}{n+2}*C{n}

变形:C{(n)}=\frac{C\binom{n}{2n}}{n+1}

2、解题分析

  • 动态规划
    • 初始话一个dp数组,长度是n+1
    • dp[0],dp[1]=0,0;表示根节点为空或者只有一个节点的二叉搜索树只有一个
    • 从2~n+1开始外层循环进行遍历
      • 从1~i+1开始遍历内层循环
        • 执行dp[i]+=dp[j-1]*dp[i-j]动态转移方程
  • 公式法
    • 用一层for循环然后把Cn计算出来即可

3、代码

class Solution:
    def numTrees(self, n: int) -> int:
        #公式法
        C = 1
        for i in range(0, n):
            C = C * 2*(2*i+1)/(i+2)
        return int(C)


        #动态规划
        dp = [0]*(n+1)
        dp[0],dp[1] = 1,1
        for i in range(2,n+1):
            for j in range(1,i+1):
                dp[i]+=dp[j-1]*dp[i-j]

        return dp[n]

总结:求括号化的数量、计算出栈次序、买票找零、凸多边形三角划分、给定节点组成二叉搜索树、n对括号正确匹配数目都是卡塔兰数的应用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值