给定一个整数 n,求以 1 ... n 为节点组成的二叉搜索树有多少种?
示例:
输入: 3
输出: 5
解释:
给定 n = 3, 一共有 5 种不同结构的二叉搜索树:
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
1、题目分析
看到这个题就觉得熟悉,之前在数据结构的课上看到过,但是具体原理忘记了。然后看了discuss之后这个原来就是传说的卡 塔兰数,这是比利时一个数学家卡塔兰的人发明的,因此就以它的名字来命名。
G(n)用来表示,n个节点组成的不同二叉搜索树;f(i)(i的范围是1~i)用来表示以i为根节点的二叉搜索树的个数。
G(n) = f(1)+f(2)+f(3)+.......+f(n)
所以计算出来f(i)整个结果都出来了,重心就转移到f(i)的计算。
如果以i为根节点,左子树的节点的个数是i-1,也就是0~i-1,右子树的节点的个数是n-i,也就是i+1~n.
所以f(i) = G(i-1)*G(n-i)
因此G(n)=G(0)*G(n-1)+G(1)*G(n-2)+.........+G(n-1)*G(0);G(0)=1,G(1)=1
卡塔兰数公式:C0=1,
变形:
2、解题分析
- 动态规划
- 初始话一个dp数组,长度是n+1
- dp[0],dp[1]=0,0;表示根节点为空或者只有一个节点的二叉搜索树只有一个
- 从2~n+1开始外层循环进行遍历
- 从1~i+1开始遍历内层循环
- 执行dp[i]+=dp[j-1]*dp[i-j]动态转移方程
- 从1~i+1开始遍历内层循环
- 公式法
- 用一层for循环然后把Cn计算出来即可
3、代码
class Solution:
def numTrees(self, n: int) -> int:
#公式法
C = 1
for i in range(0, n):
C = C * 2*(2*i+1)/(i+2)
return int(C)
#动态规划
dp = [0]*(n+1)
dp[0],dp[1] = 1,1
for i in range(2,n+1):
for j in range(1,i+1):
dp[i]+=dp[j-1]*dp[i-j]
return dp[n]
总结:求括号化的数量、计算出栈次序、买票找零、凸多边形三角划分、给定节点组成二叉搜索树、n对括号正确匹配数目都是卡塔兰数的应用。