数学推导+纯Python实现机器学习算法10:线性不可分支持向量机

Python机器学习算法实现

Author:louwill

     

     本节笔者和大家讨论支持向量机的最后一种情况——非线性支持向量机。前面两节我们探讨了数据样例是完全线性可分情况和近似线性可分情况下的支持向量机模型。但线性可分情况并非总如人愿,大多数时候我们遇到的都是非线性情况。

640?wx_fmt=png

     

     所谓非线性可分问题,就是对于给定数据集,如果能用一个超曲面将正负实例正确分开,则这个问题为非线性可分问题。非线性问题的一个关键在于将原始数据空间转换到一个新的数据空间,在原始空间中的非线性可分问题到新空间就是是线性可分问题。

     一般来说,用线性可分方法来解决非线性可分问题可分为两步:首先用一个变换将原始空间的数据映射到新空间,再在新空间中用线性分类学习方法训练分类模型。这种将原始空间转换到新空间的方法称为核技巧(kernel trick)。

640?wx_fmt=png

     假设存在一个从输入空间到特征空间的映射,使得所有的x和z都有函数K(x,z)=&(x).&(z),则称K(x,z)为核函数。在实际问题中,通常直接给定核函数的形式,然后进行求解。核函数的选择通常依赖于领域知识,最后由实验验证其有效性。常用的核函数包括多项式核函数、高斯核函数以及sigmoid核函数等,核函数更多细节问题可参考统计学习方法。

     基于核函数的非线性支持向量机对偶优化问题如下:

640?wx_fmt=png

     当核函数为正定核的时候,上述优化问题为凸优化问题,是可以直接进行求解的。可求得最优解:

640?wx_fmt=png

     计算w如下:

640?wx_fmt=png

     最后可构造分类决策函数:

640?wx_fmt=png

     虽然凸优化问题可以直接求解,但当数据量很大时,直接求解将会非常低效,这时候可能需要一些高效的训练算法,比如说SMO(序列最小最优化)算法。关于SMO算法的内容这里不展开叙述,可参考统计学习方法了解更多内容。

640?wx_fmt=png

下面来看基于cvxopt的非线性支持向量机快速实现方法。

导入相关package:

import numpy as np	
from numpy import linalg	
import cvxopt	
import cvxopt.solvers	
import pylab as pl

定义多项式核函数如下:

def polynomial_kernel(x, y, p=3):	
    return (1 + np.dot(x, y)) ** p

生成示例数据:

def gen_non_lin_separable_data():	
    mean1 = [-1, 2]	
    mean2 = [1, -1]	
    mean3 = [4, -4]	
    mean4 = [-4, 4]	
    cov = [[1.0, 0.8], [0.8, 1.0]]	
    X1 = np.random.multivariate_normal(mean1, cov, 50)	
    X1 = np.vstack((X1, np.random.multivariate_normal(mean3, cov, 50)))	
    y1 = np.ones(len(X1))	
    X2 = np.random.multivariate_normal(mean2, cov, 50)	
    X2 = np.vstack((X2, np.random.multivariate_normal(mean4, cov, 50)))	
    y2 = np.ones(len(X2)) * -1	
    return X1, y1, X2, y2

然后是构建非线性支持向量机模型,完整版代码如下:

import numpy as np	
from numpy import linalg	
import cvxopt	
import cvxopt.solvers	

	
def polynomial_kernel(x, y, p=3):	
    return (1 + np.dot(x, y)) ** p	

	
class nolinear_svm(object):	
    	
    def __init__(self, kernel=linear_kernel, C=None):	
        self.kernel = kernel	
        self.C = C	
        if self.C is not None: self.C = float(self.C)	
    	
    def fit(self, X, y):	
        n_samples, n_features = X.shape	
        	
        # Gram 矩阵	
        K = np.zeros((n_samples, n_samples))	
        for i in range(n_samples):	
            for j in range(n_samples):	
                K[i, j] = self.kernel(X[i], X[j])	
        	
        P = cvxopt.matrix(np.outer(y, y) * K)	
        q = cvxopt.matrix(np.ones(n_samples) * -1)	
        A = cvxopt.matrix(y, (1, n_samples))	
        b = cvxopt.matrix(0.0)	
        	
        if self.C is None:	
            G = cvxopt.matrix(np.diag(np.ones(n_samples) * -1))	
            h = cvxopt.matrix(np.zeros(n_samples))	
        else:	
            tmp1 = np.diag(np.ones(n_samples) * -1)	
            tmp2 = np.identity(n_samples)	
            G = cvxopt.matrix(np.vstack((tmp1, tmp2)))	
            tmp1 = np.zeros(n_samples)	
            tmp2 = np.ones(n_samples) * self.C	
            h = cvxopt.matrix(np.hstack((tmp1, tmp2)))	
        	
        # 求解二次规划	
        solution = cvxopt.solvers.qp(P, q, G, h, A, b)	
        	
        # 获得拉格朗日乘子	
        a = np.ravel(solution['x'])	
        	
        # 非零拉格朗日乘子的支持向量	
        sv = a > 1e-5	
        ind = np.arange(len(a))[sv]	
        self.a = a[sv]	
        self.sv = X[sv]	
        self.sv_y = y[sv]	
        print("%d support vectors out of %d points" % (len(self.a), n_samples))	
        	
        # 截距项	
        self.b = 0	
        for n in range(len(self.a)):	
            self.b += self.sv_y[n]	
            self.b -= np.sum(self.a * self.sv_y * K[ind[n], sv])	
        self.b /= len(self.a)	
        	
        # 权重参数向量	
        if self.kernel == linear_kernel:	
            self.w = np.zeros(n_features)	
            for n in range(len(self.a)):	
                self.w += self.a[n] * self.sv_y[n] * self.sv[n]	
        else:	
            self.w = None	
            	
    # 预测函数	
    def project(self, X):	
        if self.w is not None:	
            return np.dot(X, self.w) + self.b	
        else:	
            y_predict = np.zeros(len(X))	
            for i in range(len(X)):	
                s = 0	
                for a, sv_y, sv in zip(self.a, self.sv_y, self.sv):	
                    s += a * sv_y * self.kernel(X[i], sv)	
                y_predict[i] = s	
            return y_predict + self.b	
    	
    def predict(self, X):	
        return np.sign(self.project(X))	

	

	
if __name__ == "__main__":	
    def gen_non_lin_separable_data():	
        mean1 = [-1, 2]	
        mean2 = [1, -1]	
        mean3 = [4, -4]	
        mean4 = [-4, 4]	
        cov = [[1.0, 0.8], [0.8, 1.0]]	
        X1 = np.random.multivariate_normal(mean1, cov, 50)	
        X1 = np.vstack((X1, np.random.multivariate_normal(mean3, cov, 50)))	
        y1 = np.ones(len(X1))	
        X2 = np.random.multivariate_normal(mean2, cov, 50)	
        X2 = np.vstack((X2, np.random.multivariate_normal(mean4, cov, 50)))	
        y2 = np.ones(len(X2)) * -1	
        return X1, y1, X2, y2	
    	
    def split_train(X1, y1, X2, y2):	
        X1_train = X1[:90]	
        y1_train = y1[:90]	
        X2_train = X2[:90]	
        y2_train = y2[:90]	
        X_train = np.vstack((X1_train, X2_train))	
        y_train = np.hstack((y1_train, y2_train))	
        return X_train, y_train	
    	
    def split_test(X1, y1, X2, y2):	
        X1_test = X1[90:]	
        y1_test = y1[90:]	
        X2_test = X2[90:]	
        y2_test = y2[90:]	
        X_test = np.vstack((X1_test, X2_test))	
        y_test = np.hstack((y1_test, y2_test))	
        return X_test, y_test	
    	
    def plot_margin(X1_train, X2_train, clf):	
        def f(x, w, b, c=0):	
            return (-w[0] * x - b + c) / w[1]	
        	
        pl.plot(X1_train[:, 0], X1_train[:, 1], "ro")	
        pl.plot(X2_train[:, 0], X2_train[:, 1], "bo")	
        pl.scatter(clf.sv[:, 0], clf.sv[:, 1], s=100, c="g")	
        	
        # w.x + b = 0	
        a0 = -4;	
        a1 = f(a0, clf.w, clf.b)	
        b0 = 4;	
        b1 = f(b0, clf.w, clf.b)	
        pl.plot([a0, b0], [a1, b1], "k")	
        	
        # w.x + b = 1	
        a0 = -4;	
        a1 = f(a0, clf.w, clf.b, 1)	
        b0 = 4;	
        b1 = f(b0, clf.w, clf.b, 1)	
        pl.plot([a0, b0], [a1, b1], "k--")	
        	
        # w.x + b = -1	
        a0 = -4;	
        a1 = f(a0, clf.w, clf.b, -1)	
        b0 = 4;	
        b1 = f(b0, clf.w, clf.b, -1)	
        pl.plot([a0, b0], [a1, b1], "k--")	
        	
        pl.axis("tight")	
        pl.show()	
    	
    	
    def plot_contour(X1_train, X2_train, clf):	
        pl.plot(X1_train[:, 0], X1_train[:, 1], "ro")	
        pl.plot(X2_train[:, 0], X2_train[:, 1], "bo")	
        pl.scatter(clf.sv[:, 0], clf.sv[:, 1], s=100, c="g")	
        	
        X1, X2 = np.meshgrid(np.linspace(-6, 6, 50), np.linspace(-6, 6, 50))	
        X = np.array([[x1, x2] for x1, x2 in zip(np.ravel(X1), np.ravel(X2))])	
        Z = clf.project(X).reshape(X1.shape)	
        pl.contour(X1, X2, Z, [0.0], colors='k', linewidths=1, origin='lower')	
        pl.contour(X1, X2, Z + 1, [0.0], colors='grey', linewidths=1, origin='lower')	
        pl.contour(X1, X2, Z - 1, [0.0], colors='grey', linewidths=1, origin='lower')	
        	
        pl.axis("tight")	
        pl.show()	
    	
    def test_non_linear():	
        X1, y1, X2, y2 = gen_non_lin_separable_data()	
        X_train, y_train = split_train(X1, y1, X2, y2)	
        X_test, y_test = split_test(X1, y1, X2, y2)	
        	
        clf = nolinear_svm(polynomial_kernel)	
        clf.fit(X_train, y_train)	
        	
        y_predict = clf.predict(X_test)	
        correct = np.sum(y_predict == y_test)	
        print("%d out of %d predictions correct" % (correct, len(y_predict)))	
        	
        plot_contour(X_train[y_train == 1], X_train[y_train == -1], clf)	
    	
    test_non_linear()

基于多项式核函数的非线性支持向量机分类效果如下:

640?wx_fmt=png

     以上就是本节内容,关于支持向量机的部分内容,笔者就简单写到这里,下一讲我们来看看朴素贝叶斯算法。完整代码文件和数据可参考笔者GitHub地址:

https://github.com/luwill/machine-learning-code-writing

参考资料:

https://github.com/SmirkCao/Lihang/tree/master/CH07

http://cvxopt.org/examples/

往期精彩:


一个数据科学从业者的学习历程

640?

640?wx_fmt=jpeg

长按二维码.关注机器学习实验室

640?wx_fmt=jpeg

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值