大家好!我是louwill。
深度学习近年来在众多领域已取得了令人瞩目的成就,计算机视觉正是其中的典型代表。图像分割是图像处理和计算机视觉的一个重要应用方向,在深度学习的影响下,图像分割经历了由传统图像处理技术向深度学习主导的重要转变。特别是去年SAM等一众图像分割大模型涌现,深度学习图像分割发展已近白热化。
过去一年里,《深度学习图像分割》这本书已完成初稿,近日在整理相关文献以备下一轮修改。这本书累计用到300多篇参考文献,经笔者精心整理后,从中筛选出103篇代表了深度学习图像分割开创、发展、重大里程碑的论文。
为了方面各位读者有针对性的选读和学习,根据本书内容框架,笔者将该103篇论文进行分类整理,大家可以根据自己的需要下载和选读。
103篇论文合集
深度学习图像分割各类综述论文系列:
综述是快速了解一个研究领域和方向的最佳手段,笔者提倡各位好好读综述,读好的综述。该系列包括论文8篇,主要有语义分割综述、医学图像分割综述、3D图像分割综述、实例分割综述、全景分割综述、半监督语义分割综述、视觉Transformer综述、SAM综述等。
深度学习图像分割早期与编解码结构网络系列:
该系列总共包括论文21篇,主要有FCN、UNet、SegNet、PSPNet、RefineNet、Tiramisu、ResUNet、UNet++、UNet 3+、Attention UNet、Attention ResUNet、Baysian UNet、Continous UNet、nnUNet等。
该系列是深度学习图像分割发展主流,相关文献不可胜数,笔者仅根据实际需要挑选了一些具备代表性的论文,读者可根据个人情况进行补充。
基于上下文和多尺度的网络结构系列:
该系列总共入选论文7篇,主要有FastFCN、CENet、HRNet和Deeplab系列论文等。
基于Transformer结构的网络系列:
该系列入选论文17篇,主要包括Transformer、ViT、SegFormer、OneFormer、TransUNet、Swin Transformer、Swin UNet、SETR等代表性文献。
Transformer在近两年被融入到视觉领域,并且在一众视觉任务中大放异彩,并且在当前的深度学习图像分割表现中已超过传统的CNN结构。该方向已成为深度学习图像分割最重要的研究方向之一。
实例分割和全景分割系列:
该系列入选论文11篇,包括像Mask RCNN、PANet、SOLO、SOLO v2、PolarMask、BlendMask和Panoptic Segmantation等代表性论文。实例分割是图像分割领域相对重要且具备挑战性的一个细分方向。其特征是在语义分割基础上进一步对目标类别的实例做出区分,需要定位出同一目标类别物体的不同实例。全景分割则是语义分割和实例分割的结合,都是图像分割领域重要的研究方向。
3D图像分割系列:
该系列与其他系列有较多交集,特别是编解码和Transformer系列,分类文章较少,因为部分3D分割论文已经被归类到其他系列,这一点需要读者自己区分。该系列包括代表论文5篇,主要有3D UNet、VNet、UNetR和nnFormer等。
SAM与图像分割大模型系列:
该系列是图像分割领域的新贵,去年SAM一鸣惊人之后,该领域涌现了众多重大的代表性研究。该方向入选论文14篇,以SAM、MedSAM、SEEM、SegGPT、UniverSeg等为代表。
无监督、半监督和弱监督图像分割系列:
该系列主要在医学图像等数据获取难度大、标注成本高的领域应用广泛,该系列入选论文7篇,主要包括WNet、Semi-supervised Medical Seg等代表性论文。
图像分割数据集系列:
该方向主要针对深度学习图像分割发展过程中的一些重大的、经典的公开数据集论文进行汇总。入选论文6篇,包括PASCAL VOC、COCO、Cityscapes、ADE20K、Medical Segmentation Decathlon等自然数据集和医学图像数据集。
其他图像分割研究方向系列:
还有一些细分方向不方便归为上述分类的,并且所入选论文较少,包括基于MLP的分割,基于点云数据的分割,图像分割模型训练技巧等。该方向汇总论文7篇,各位读者可根据自身需要选读。
全部103篇论文已经分类汇总后打包到网盘,感兴趣的读者可以点击下方链接进行下载: