机器学习代码实战——逻辑回归(Logistic Regression)

1.实验目的

(1)对数据进行分析,以找出哪些变量对员工保留有直接和明显的影响(即它们是离开公司还是继续工作)
(2)绘制条形图,显示员工工资对保留率的影响
绘制条形图,显示部门和员工保留之间的相关性
(3)构建逻辑回归模型并计算模型的准确性

2.导入必要模块并读取数据

import pandas as pd    
import matplotlib.pyplot as plt
%matplotlib inline

df = pd.read_csv('HR_comma_sep.csv')
df.shape    #14999条数据,10个字段
left = df[df.left==1]     #离职
left.shape
retained = df[df.left==0]   #在职
retained.shape

3.可视化分析数据

df.groupby('left').mean()     #按是否离职对数据分组
#0表示在职,1表示离职

在这里插入图片描述

pd.crosstab(df.salary,df.left).plot(kind='bar')    #比较薪水对员工离职的影响

在这里插入图片描述

pd.crosstab(df.Department,df.left).plot(kind='bar')    #比较不同部门对员工离职的影响

在这里插入图片描述

4.数据预处理

subdf = df[['satisfaction_level','average_montly_hours','promotion_last_5years','salary']]  #提取5个影响因素
subdf.head()

salary_dummies = pd.get_dummies(subdf.salary,prefix='salary')   #将salary字段数字化 ,转化后的字段加前缀salary

df_with_dummies = pd.concat([subdf,salary_dummies],axis='columns')  #拼接字段
df_with_dummies.head()

在这里插入图片描述

df_with_dummies.drop('salary',axis='columns',inplace=True)   #删除原salary字段
df_with_dummies.head()

在这里插入图片描述

X = df_with_dummies    #数据
y = df.left      #标签

5.训练+预测

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression    #导入逻辑回归模块

X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2)
model = LogisticRegression()   #实例化模型
model.fit(X_train, y_train)   #训练

model.predict(X_test)   #预测
model.score(X_test,y_test)   #计算得分
model.coef_     #打印系数
model.intercept_   #打印截距

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值