【LeetCode 动态规划专项】最长公共子序列(1143)

1. 题目

给定两个字符串 text1text2,返回这两个字符串的最长公共子序列的长度。如果不存在公共子序列,返回 0 0 0

一个字符串的子序列是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

例如,"ace""abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。两个字符串的公共子序列是这两个字符串所共同拥有的子序列。

1.1 示例

  • 示例 1 1 1
  • 输入: text1 = "abcde"text2 = "ace"
  • 输出: 3 3 3
  • 解释: 最长公共子序列是 "ace" ,它的长度为 3 3 3
  • 示例 2 2 2

  • 输入: text1 = "abc"text2 = "abc"

  • 输出: 3 3 3

  • 解释: 最长公共子序列是 "abc" ,它的长度为 3 3 3

  • 示例 3 3 3

  • 输入: text1 = "abc"text2 = "def"

  • 输出: 0 0 0

  • 解释: 两个字符串没有公共子序列,返回 0 0 0

1.2 说明

1.3 提示

  • 1 <= text1.length, text2.length <= 1000
  • text1text2 仅由小写英文字符组成。

1.4 进阶

text1text2 存在最长公共子序列时,你可以进一步输出该最长公共子序列么?

2. 解法一(动态规划)

2.1 分析

2.1.1 定义状态

  • dp[i][j] :表示 text1 长度为 i 的前缀子序列和 text2 长度为 j 的前缀子序列二者最长公共子序列的长度。

这里我们引出了前缀子序列的概念,为便于后续讨论,下面给出前缀子序列的严格定义:

给定任意的序列 X = ( x 1 , x 2 , ⋯   , x m ) X=(x_1,x_2,\cdots,x_m) X=(x1,x2,,xm) ,对于 i = 0 , 1 , ⋯   , m i=0,1,\cdots,m i=0,1,,m ,则称 X i = ( x 1 , x 2 , ⋯   , x i ) X_i=(x_1,x_2,\cdots,x_i) Xi=(x1,x2,,xi) X X X 的第 i i i 个前缀子序列,显然 X 0 X_0 X0 是一个空序列。

2.1.2 初始化状态

显然当 ij 0 0 0dp[i][j] 均为 0 0 0

2.1.3 状态转移

实际上,如果分别给定两个序列 X = ( x 1 , x 2 , ⋯   , x m ) X=(x_1,x_2,\cdots,x_m) X=(x1,x2,,xm) Y = ( y 1 , y 2 , ⋯   , y n ) Y=(y_1,y_2,\cdots,y_n) Y=(y1,y2,,yn) ,且已知 Z = ( z 1 , z 2 , ⋯   , z k ) Z=(z_1,z_2,\cdots,z_k) Z=(z1,z2,,zk) X X X Y Y Y 的任意一个最长公共子序列,则有如下性质:

  1. 如果 x m = y n x_m = y_n xm=yn ,则必然有 z k = x m = y n z_k = x_m = y_n zk=xm=yn Z k − 1 Z_{k - 1} Zk1 X m − 1 X_{m - 1} Xm1 Y n − 1 Y_{n - 1} Yn1 的一个最长公共子序列;
  2. 如果 x m ≠ y n x_m \ne y_n xm=yn ,则由 z k ≠ x m z_k \ne x_m zk=xm 可推定 Z Z Z X m − 1 X_{m - 1} Xm1 Y Y Y 的一个最长公共子序列;
  3. 如果 x m ≠ y n x_m \ne y_n xm=yn ,则由 z k ≠ y n z_k \ne y_n zk=yn 可推定 Z Z Z X X X Y n − 1 Y_{n - 1} Yn1 的一个最长公共子序列。

下面给出对于上述性质的证明:

  1. 首先证明 z k = x m z_k = x_m zk=xm ,这里采用反证法,即先假设 z k ≠ x m z_k \ne x_m zk=xm ,则可以将 x m = y n x_m = y_n xm=yn 追加至 Z Z Z 的最后,此时得到了序列 X X X Y Y Y 的一个长度为 k + 1 k + 1 k+1 的公共子序列,这和 Z Z Z (长度为 k k k)是 X X X Y Y Y 的最长公共子序列这一条件相矛盾,因此必有 z k = x m = y n z_k = x_m = y_n zk=xm=yn ;此外还需要证明 Z k − 1 Z_{k - 1} Zk1 X m − 1 X_{m - 1} Xm1 Y n − 1 Y_{n - 1} Yn1 的一个最长公共子序列,对此先假设 X m − 1 X_{m - 1} Xm1 Y n − 1 Y_{n - 1} Yn1 有一个长度大于 k − 1 k - 1 k1 的公共子序列 W W W ,此时将 x m = y n x_m = y_n xm=yn 追加至 W W W 末尾就得到了 X X X Y Y Y 的一个长度大于 k k k 的最长公共子序列,同样和条件矛盾,证毕;
  2. 如果 z k ≠ x m z_k \ne x_m zk=xm ,则显然 Z Z Z X m − 1 X_{m - 1} Xm1 Y Y Y 的一个公共子序列,假设 X m − 1 X_{m - 1} Xm1 Y Y Y 有长度大于 k k k 的公共子序列 W W W ,则 W W W 必然也是 X m X_{m} Xm Y Y Y 的公共子序列,这和 Z Z Z X X X Y Y Y 的最长公共子序列相矛盾,证毕;
  3. 证明方式同上。

实际上,根据上述性质可知:

  • x m = y n x_m = y_n xm=yn 时,通过在 X m − 1 X_{m - 1} Xm1 Y n − 1 Y_{n - 1} Yn1 的最长公共子序列后面追加 x m = y n x_m = y_n xm=yn ,即得到 X X X Y Y Y 的一个最长公共子序列;
  • x m ≠ y n x_m \ne y_n xm=yn 时, X m − 1 X_{m - 1} Xm1 Y Y Y 的最长公共子序列同 X X X Y n − 1 Y_{n - 1} Yn1 的最长公共子序列中更长的那个即为 X X X Y Y Y 的一个最长公共子序列。

据此,我们可以写出下列状态转移方程:

d p [ i , j ] = { 0 i = 0  or  j = 0 1 + d p [ i − 1 , j − 1 ] i ,  j > 0  and  x i = y j max ( d p [ i , j − 1 ] , d p [ i − 1 , j ] ) i ,  j > 0  and  x i ≠ y j dp[i, j]= \begin{cases} 0& {i = 0} \text { or } {j = 0} \\ 1+dp[i - 1, j - 1]& {i \text{, } j \gt 0} \text{ and } {x_i = y_j} \\ \text{max} (dp[i, j - 1], dp[i - 1, j])& {i \text{, } j \gt 0} \text{ and } {x_i \ne y_j} \end{cases} dp[i,j]=01+dp[i1,j1]max(dp[i,j1],dp[i1,j])i=0 or j=0ij>0 and xi=yjij>0 and xi=yj

i > 0j > 0 时:

  • 如果 text1[i - 1]text2[j - 1] 相同,则 dp[i][j] = dp[i - 1][j - 1] + 1
  • 如果 text1[i - 1]text2[j - 1] 不相同,则 dp[i][j]dp[i - 1][j]dp[i ][j - 1] 二者较大值。

2.1.4 返回结果

最终 dp[m][n] 即为所求的结果,其中 m m m n n n 分别为 text1text2 的长度。

2.2 解答

需要注意的是,下面代码并不是采用自顶向下的解法而是采用自下而上的解法:

class Solution:
    def longest_common_subsequence(self, text1: str, text2: str) -> int:
        m, n = len(text1), len(text2)
        dp = [[0] * (n + 1) for _ in range(m + 1)]
        for i in range(1, m + 1):
            for j in range(1, n + 1):
                if text1[i - 1] == text2[j - 1]:
                    dp[i][j] = dp[i - 1][j - 1] + 1
                else:
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
        return dp[m][n]


def main():
    text1 = "abcde"
    text2 = "ace"
    sln = Solution()
    print(sln.longest_common_subsequence(text1, text2))  # 3


if __name__ == '__main__':
    main()

  • 执行用时: 288 ms , 在所有 Python3 提交中击败了 90.36% 的用户;
  • 内存消耗: 22.6 MB , 在所有 Python3 提交中击败了 50.58% 的用户。

2.3 复杂度

  • 时间复杂度: O ( m n ) O(mn) O(mn),其中 m m m n n n 分别是字符串 text1text2 的长度。二维数组 dp m + 1 m+1 m+1 行和 n + 1 n+1 n+1 列,需要对 dp 中的每个元素进行计算;
  • 空间复杂度: O ( m n ) O(mn) O(mn),其中 m m m n n n 分别是字符串 text1text2 的长度。创建了 m + 1 m+1 m+1 n + 1 n+1 n+1 列的二维数组 dp

3. 重建 LCS

3.1 递归重建

为了计算出两个给定序列的一个最长公共子序列,我们还需要一个辅助的二维数组 paths ,其中 paths[i][j] 保存了在计算 dp[i][j] 时所使用的 dp 元素。例如:

  • paths[i][j] = 'LEFT_UPWARD' 表示计算 dp[i][j] 时由 dp[i - 1][j - 1] 这一状态转移过来;
  • paths[i][j] = 'UPWARD' 表示计算 dp[i][j] 时由 dp[i - 1][j] 这一状态转移过来;
  • paths[i][j] = 'LEFTWARD' 表示计算 dp[i][j] 时由 dp[i][j - 1] 这一状态转移过来。

下表是使用 dppaths 计算两个序列 "ABCBDAB""BDCABA" 最长公共子序列时 dp[i][j]paths[i][j] 的取值情况,其中值得注意的是:

  • dp[7][6] 就是上述两个给定序列的最长公共子序列的长度;
  • 对任意 i > 0j > 0 ,元素 dp[i][j] 的值只在 x i = y j x_i = y_j xi=yj 时取决于 dp[i - 1][j - 1] ,或者在 x i ≠ y j x_i \ne y_j xi=yj 时取决于 dp[i - 1][j]dp[i][j - 1] ,而这三个元素都在计算 dp[i][j] 之前就已经算出来了;
  • 当需要计算两个序列的一个最长公共子序列时,只要沿着从 paths[7][6] 开始的箭头回溯即可,具体地,每次遇到指向左上方的箭头,即 paths[i][j] == 'LEFT_UPWARD' 时,这意味着 x i = y j x_i = y_j xi=yj 就是最长公共子序列的一个元素。
    在这里插入图片描述

下面即是根据上述分析,实现了计算一个最长子序列:

from typing import List, Tuple


class Solution:
    def __init__(self):
        self._lcs = []

    def _reconstruct_lcs(self, paths: List[List[str]], text1: str, i: int, j: int):
        if i == 0 or j == 0:
            return
        if paths[i][j] == 'LEFT_UPWARD':
            self._reconstruct_lcs(paths, text1, i - 1, j - 1)
            self._lcs.append(text1[i - 1])
        elif paths[i][j] == 'UPWARD':
            self._reconstruct_lcs(paths, text1, i - 1, j)
        else:
            self._reconstruct_lcs(paths, text1, i, j - 1)

    def calc_lcs(self, text1: str, text2: str) -> Tuple[int, List[List[str]]]:
        m, n = len(text1), len(text2)
        paths = [[''] * (n + 1) for _ in range(m + 1)]
        dp = [[0] * (n + 1) for _ in range(m + 1)]
        for i in range(1, m + 1):
            for j in range(1, n + 1):
                if text1[i - 1] == text2[j - 1]:
                    dp[i][j] = dp[i - 1][j - 1] + 1
                    paths[i][j] = 'LEFT_UPWARD'
                elif dp[i - 1][j] >= dp[i][j - 1]:
                    dp[i][j] = dp[i - 1][j]
                    paths[i][j] = 'UPWARD'
                else:
                    dp[i][j] = dp[i][j - 1]
                    paths[i][j] = 'LEFTWARD'
        self._reconstruct_lcs(paths, text1, m, n)
        return dp[m][n], self._lcs


def main():
    text1 = "ABCBDAB"
    text2 = "BDCABA"
    sln = Solution()
    length, lcs = sln.calc_lcs(text1, text2)
    print(length, lcs)  # 4 ['B', 'C', 'B', 'A']


if __name__ == '__main__':
    main()

对于上述实现,需要特别注意的一点是,由于其中变量 ij 都是代表前缀子序列的长度,因此当 x i = y j x_i = y_j xi=yj 时, x i x_i xi 对应 text1[i - 1]

3.2 迭代重建

递归式重建虽然容易理解,但递归终归有两个缺陷,即资源开销大以及有最大递归深度限制,下面给出了一种迭代重建的方式,这种方式不仅不存在递归式解法的问题,而且将空间复杂度降低了常数倍,因为我们不在需要创建一个单独的二维列表 paths

from typing import List


class Solution:
    def _calc_dp(self, text1: str, text2: str) -> List[List[int]]:
        m, n = len(text1), len(text2)
        dp = [[0] * (n + 1) for _ in range(m + 1)]
        for i in range(1, m + 1):
            for j in range(1, n + 1):
                if text1[i - 1] == text2[j - 1]:
                    dp[i][j] = dp[i - 1][j - 1] + 1
                else:
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
        return dp

    def iterative_calc_lcs(self, text1: str, text2: str) -> str:
        dp = self._calc_dp(text1, text2)
        sln = []
        i, j = len(text1), len(text2)
        while i > 0 and j > 0:
            if text1[i - 1] == text2[j - 1]:
                sln.append(text1[i - 1])
                i -= 1
                j -= 1
            elif dp[i - 1][j] >= dp[i][j - 1]:
                i -= 1
            else:
                j -= 1
        return ''.join(reversed(sln))


def main():
    text1 = "ABCBDAB"
    text2 = "BDCABA"
    sln = Solution()
    print(sln.iterative_calc_lcs(text1, text2))  # BCBA


if __name__ == '__main__':
    main()

最后关于对 sln = ['A', 'B', 'C', 'B'] 分别使用 reversed 类创建对象以及使用列表的 reverse() 方法产生的效果如下所示:

sln = ['A', 'B', 'C', 'B']
print(sln)
['A', 'B', 'C', 'B']
for char in reversed(sln):
    print(char)
    
B
C
B
A
sln.reverse()
print(sln)
['B', 'C', 'B', 'A']

即:

  • 使用 reversed 类会创建一个迭代器对象而不会改变列表本身;
  • 调用列表的 reverse() 方法将会对列表做原地的逆序操作,会改变列表本身。

4. 参考资料

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值