动态规则法2—最长公共子序列

动态规则法2—最长公共子序列

        如果序列Z同时为X和Y的子序列,那么Z就称为X与Y的公共子序列。

        给定两个字符串X,Y,输出最长公共子序列(LCS longest common subsequence problem)Z的长度。

        运用动态规划的思路,要考虑两种情况:

  • x_{m}y_{n}相等时,在X_{m-1}Y_{n-1}的LCS后面加上x_{m}就是X_{m}Y_{n}的LCS。
  • x_{m}y_{n}不相等时,X_{m-1}Y_{n}的LCS和Y_{n-1}v和X_{m}的LCS更长的一方就是X_{m}Y_{n}的LCS。

        于是便得出了下列公式:(c[i][j]代表X_{i}Y_{j}的LCS的长度)

c[i][j]
0i=0,j=0
c[i-1][j-1]+1i,j>0&&x_{i}=y_{j}
max(c[i-1][j],c[i][j-1])i,j>0&&x_{i}\neqy_{j}

        基于上面的公式,使用动态规划的思路求LCS,具体算法如下:

#include<iostream>
#include<string>
#include<algorithm>
using namespace std;
static const int  MAX=100;

int lcs(string x, string y) {

	int c[MAX][MAX];
	int n, m;

	n = x.size();
	m = y.size();
	
	int max1=0;

	for (int i = 0; i <= n; i++) {
		c[i][0] = 0;
	}

	for (int j = 0; j <= m; j++) {
		c[0][j]=0;
	}

	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= m; j++) {
			if (x[i] == y[j])c[i][j] = c[i - 1][j - 1] + 1;
			else {
				c[i][j] = max(c[i - 1][j], c[i][j - 1]);
			}
			max1 = max(c[i][j], max1);
		}
	}

	return max1;
}

int main() {
	string s1, s2;
	int n;
	cin >> n;
	for (int i = 0; i < n; i++) {
	cin >> s1 >> s2;
	cout << lcs(s1, s2) << endl;
	}
	return 0;
}

        此算法复杂度为O(nm)


读《挑战程序设计竞赛》第二十九天(侵删)2021.3.30

( 2021.7.13 第一次修改)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>