动态规则法2—最长公共子序列
如果序列Z同时为X和Y的子序列,那么Z就称为X与Y的公共子序列。
给定两个字符串X,Y,输出最长公共子序列(LCS longest common subsequence problem)Z的长度。
运用动态规划的思路,要考虑两种情况:
- 和相等时,在和的LCS后面加上就是和的LCS。
- 和不相等时,和的LCS和v和的LCS更长的一方就是和的LCS。
于是便得出了下列公式:(c[i][j]代表和的LCS的长度)
0 | i=0,j=0 |
c[i-1][j-1]+1 | i,j>0&&= |
max(c[i-1][j],c[i][j-1]) | i,j>0&& |
基于上面的公式,使用动态规划的思路求LCS,具体算法如下:
#include<iostream>
#include<string>
#include<algorithm>
using namespace std;
static const int MAX=100;
int lcs(string x, string y) {
int c[MAX][MAX];
int n, m;
n = x.size();
m = y.size();
int max1=0;
for (int i = 0; i <= n; i++) {
c[i][0] = 0;
}
for (int j = 0; j <= m; j++) {
c[0][j]=0;
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
if (x[i] == y[j])c[i][j] = c[i - 1][j - 1] + 1;
else {
c[i][j] = max(c[i - 1][j], c[i][j - 1]);
}
max1 = max(c[i][j], max1);
}
}
return max1;
}
int main() {
string s1, s2;
int n;
cin >> n;
for (int i = 0; i < n; i++) {
cin >> s1 >> s2;
cout << lcs(s1, s2) << endl;
}
return 0;
}
此算法复杂度为O(nm)。
读《挑战程序设计竞赛》第二十九天(侵删)2021.3.30
( 2021.7.13 第一次修改)