Luma AI 神器Genie 3D 模型设计新世代,简单1句话即可创建逼真模型!

在数位设计的世界中,我们迎来了一场技术革命! Luma AI 的最新神器Genie 正式登场,这不仅是一个机器人,更是你的3D 设计助手。你曾经想像过,在简单的文字命令下,秒变为3D 设计师的可能性吗? Genie 不仅实现了这一梦想,更让整个设计领域为之震撼。


ADVERTISEMENT



目前,Genie 以研究预览版本的形式免费提供,这就意味着你可以即刻体验它的强大功能。可用于文本和图像的生成,为各行各业带来了极大的便利,对游戏开发、虚拟制作领域的影响正在逐渐浮现,也意味着设计师和创作者将拥有更多探索和实现创意的可能性。


 


首先,登入Discord,并接受邀请
 


同意使用规则
 

2.点选左侧房间
点选左侧的任何一个聊天室

 


在对话框输入「/」,出现genie,后面输入英文的提示词。
 


Luma AI
支持格式:luma/ply
使用:开启lumaAI插件后直接导入即可
导入后会渲染生成两种不同效果的模型(粒子):Baked、Dynamic
Baked:根据实拍场景模拟烘焙出的光照效果,不受UE光照影响
Dynamic:受光照影响
在上述两种情况下还会根据导入格式不同再生成两种类型的模型(粒子)Specific to Luma Fields、Specific to Interactive Scenes
Specific to Luma Fields(luma格式才会生成)
蓝图会包含一个自动裁剪版本的中心对象的捕获,并且会渲染出一个合适的天空环境
Specific to Interactive Scenes(导入ply会生成)
不计算运动矢量 以牺牲质量换取性能
导入后会有偏移
调整到下图参数基本处于正向

 


可通过勾选下列四个裁剪方块对模型进行裁剪,裁剪方块的大小和位置可控
 


LMG_5 粒子瓦片的坐标
LMG_6 贴图的像素
NumGaussians 粒子数量 适当提高粒子数量会在一定程度上提高清晰度 粒子数量一定程度后无论如何添加都不会有效果 反而会加大性能消耗


最大值200W 接近或者大于200W 会看不到粒子效果


Splat Scale 渲染的粒子大小比率
0.8 - 1.2有适当效果变化 过大过小 展现效果都会变差



3.输入提示词
我输入了兔娃娃,就会立刻生成毛茸茸的4张兔子图像,滑鼠移动到上方,即可看3D模型。
生成速度很快,不用1秒,机器人就做好3D模型了
 

4.开启3D模型介面
点选下方任意数字,开启3D模型介面,右边有4个圈圈,可以更改模型的材质跟纹理。
 


可以变换成金属材质
 


塑胶材质
 


用滑鼠拖曳可以转动模型。
 

5.可直接下载
右下角可以直接点选下载,档案类型为:3D Object (.glb)
 


输入简单的钢铁人Iron Man,就能完成3D模型
 


而且机器人创作的速度非常快。
 


结语
Genie 的出现让我们看到了3D 设计的全新未来,一个由文字即可创造复杂模型的世界。 3D模型技术具有潜在的创新性和广泛应用,可能会在未来的虚拟制作、游戏开发等领域发挥重要作用。

这技术的进步,将可能会推动相关行业的应用发展。

博客原文:https://www.closeai.cc/

专业人工智能技术社区

### 部署LUMA模型的方法 对于LUMA模型的部署,通常涉及几个关键步骤来确保模型能够有效地运行于目标环境中。虽然具体的细节可能依据不同的应用环境有所变化,但一般流程可以概括如下[^1]: #### 准备工作 确保所有必要的依赖项都已安装并配置好。这包括但不限于Python版本、特定库以及框架的支持。 #### 获取预训练模型文件 下载官方发布的最新版LUMA预训练权重文件,并将其放置在一个易于访问的位置以便后续加载使用。 #### 编写推理脚本 创建一个新的Python脚本来处理输入数据并通过调用`model.predict()`方法来进行预测操作。下面是一个简单的例子: ```python import torch from luma_model import LumaModel # 假设这是定义好的模块名 def load_luma_model(model_path): device = 'cuda' if torch.cuda.is_available() else 'cpu' model = LumaModel().to(device) checkpoint = torch.load(model_path, map_location=device) model.load_state_dict(checkpoint['state_dict']) return model.eval() if __name__ == "__main__": MODEL_PATH = "./models/luma_best.pth" # 加载模型 model = load_luma_model(MODEL_PATH) # 进行推断... ``` #### 设置API服务接口 为了使外部应用程序更容易与LUMA交互,建议设置RESTful API端点作为中介层。Flask或FastAPI都是不错的选择用于快速搭建这样的web服务器。 通过POST请求接收待分析的数据包,在内部执行上述编写的推理逻辑并将结果返回给客户端。 #### 测试验证 最后一步是对整个系统进行全面测试以确认其稳定性和准确性。可以通过发送模拟样本至API地址观察响应情况从而完成这项任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值